Investigation of Silver Nanowire Transparent Heated Films Possessing the Application Scenarios for Electrothermal Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Superficial and Interfacial Properties
3.2. Electrical Property
3.3. Thermal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-Masis, M.; De Wolf, S.; Woods-Robinson, R.; Ager, J.W.; Ballif, C. Transparent Electrodes for Efficient Optoelectronics. Adv. Electron. Mater. 2017, 3, 1600529. [Google Scholar] [CrossRef] [Green Version]
- Rey, G.; Ternon, C.; Modreanu, M.; Mescot, X.; Consonni, V.; Bellet, D. Electron Scattering Mechanisms in Fluorine-Doped SnO2 Thin Films. J. Appl. Phys. 2013, 114, 183713. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.H.; Gottlieb, U.; Valla, A.; Muñoz, D.; Bellet, D.; Muñoz-Rojas, D. Electron Tunneling through Grain Boundaries in Transparent Conductive Oxides and Implications for Electrical Conductivity: The Case of ZnO:Al Thin Films. Mater. Horiz. 2018, 5, 715–726. [Google Scholar] [CrossRef]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef]
- Kim, B.-J.; Park, J.-S.; Yoo, R.; Park, J.-S. Flexible Grid-mesh Electrodes Fabricated by Electroless Copper Plating on Corona-treated PET Substrates and Coating with Graphene for Transparent Film Heaters. RSC Adv. 2017, 7, 53025–53031. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Liang, C.; Huang, Y.-T.; Zhang, C.; Cai, J.; Feng, S.-P.; Li, W.-D. Template-Electrodeposited and Imprint-Transferred Microscale Metal-Mesh Transparent Electrodes for Flexible and Stretchable Electronics. Adv. Eng. Mater. 2019, 21, 1900723. [Google Scholar] [CrossRef]
- Thouti, E.; Mistry, C.; Chandran, A.; Kumar Panwar, D.; Kumar, P.; Suman, H.; Akhtar, J. Study of Seamless Au Mesh Flexible Transparent Heaters: Influence of Mesh Coverage. J. Phys. D: Appl. Phys. 2019, 52, 425301. [Google Scholar] [CrossRef]
- Li, L.; Yu, Z.; Hu, W.; Chang, C.-H.; Chen, Q.; Pei, Q. Efficient Flexible Phosphorescent Polymer Light-Emitting Diodes Based on Silver Nanowire-Polymer Composite Electrode. Adv. Mater. 2011, 23, 5563–5567. [Google Scholar] [CrossRef]
- Zhao, S.; Han, F.; Li, J.; Meng, X.Y.; Huang, W.P.; Cao, D.X.; Zhang, G.P.; Sun, R.; Wong, C.P. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. Small 2018, 14, 1800047. [Google Scholar] [CrossRef]
- Tan, D.; Jiang, C.; Li, Q.; Bi, S.; Song, J. Silver Nanowire Networks with Preparations and Applications: A Review. J. Mater. Sci. Mater. Electron. 2020, 31, 15669–15696. [Google Scholar] [CrossRef]
- Kwon, J.; Suh, Y.D.; Lee, J.; Lee, P.; Han, S.; Hong, S.; Yeo, J.; Lee, H.; Ko, S.H. Recent Progress in Silver Nanowire based Flexible/Wearable Optoelectronics. J. Mater. Chem. C 2018, 6, 7445–7461. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, M.; Meng, L.; Wan, X.; Gao, H.; Zhang, Y.; Zhao, K.; Sun, Z.; Li, C.; Liu, S.; et al. Flexible Organic Photovoltaics based on Water-Processed Silver Nanowire Electrodes. Nat. Electron. 2019, 2, 513–520. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Shi, S.; Xu, J.; Qin, X.; He, Q.; Yang, K.; Dai, W.; Liu, G.; Zhou, Q.; et al. Recent Progress in Silver Nanowire Networks for Flexible Organic Electronics. J. Mater. Chem. C 2020, 8, 4636–4674. [Google Scholar] [CrossRef]
- Liu, W.; Hu, Y.; Chen, Y.; Hu, Z.; Zhou, K.; Min, Z.; Liu, H.; Zhan, L.; Dai, Y. Improvement of Electrical Properties of Silver Nanowires Transparent Conductive by Metal Oxide Nanoparticles Modification. Coatings 2022, 12, 1816. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Demadrille, R.; Simonato, J.-P. All-Polymeric Flexible Transparent Heaters. ACS Appl. Mater. Interfaces 2017, 9, 27250–27256. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, Y.W.; Lee, H.S.; Kim, H.; Yang, W.S.; Suh, K.S. Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. Adv. Funct. Mater. 2013, 23, 1250–1255. [Google Scholar] [CrossRef]
- Zhu, Y.; Deng, Y.; Yi, P.; Peng, L.; Lai, X.; Lin, Z. Flexible Transparent Electrodes Based on Silver Nanowires: Material Synthesis, Fabrication, Performance, and Applications. Adv. Mater. Technol. 2019, 4, 1900413. [Google Scholar] [CrossRef]
- Hwang, B.-Y.; Choi, S.-H.; Lee, K.-W.; Kim, J.-Y. Highly Stretchable and Transparent Electrode Film based on SWCNT/Silver Nanowire Hybrid Nanocomposite. Compos. Part B Eng. 2018, 151, 1–7. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, F.; Chen, Y.; Gao, H.; Liu, W.; Zhou, K.; Min, Z.; Zhu, W. Shear Force Strategy for Preparation of Aligned Silver Nanowire Transparent Conductive Thin Films. Colloid Interface Sci. Commun. 2023, 52, 100685. [Google Scholar] [CrossRef]
- Ke, S.; Xie, J.; Chen, C.; Lin, P.; Wang, D. Van der Waals Epitaxy of Al-Doped ZnO Film on Mica as a Flexible Transparent Heater with Ultrafast Thermal Response. Appl. Phys. Lett. 2018, 112, 031905. [Google Scholar] [CrossRef]
- Cao, M.; Wang, M.; Li, L.; Qiu, H.; Yang, Z. Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films. ACS Appl. Mater. Interfaces 2018, 10, 1077–1083. [Google Scholar] [CrossRef]
- Cai, Y.; Piao, X.; Yao, X.; Gao, W.; Nie, E.; Zhang, Z.; Sun, Z. Transparent Conductive Film based on Silver Nanowires and Single-Wall Carbon Nanotubes for Transparent Heating Films. Nanotechnology 2019, 30, 225201. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Nguyen, V.H.; Muñoz-Rojas, D.; Aghazadehchors, S.; Jiménez, C.; Nguyen, N.D.; Bellet, D. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2018, 10, 19208–19217. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, T.; Kennedy, C.J.; Aeppli, A.; Kedar, D.; Robinson, J.M.; Oelker, E.; Staron, A.; Ye, J. Resolving the Gravitational Redshift across a Millimetre-Scale Atomic Sample. Nature 2022, 602, 420–424. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, C.; Jia, D.; Li, S.; Ji, S.; Ye, C. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method. ACS Appl. Mater. Interfaces 2016, 8, 9865–9871. [Google Scholar] [CrossRef]
- Goak, J.C.; Kim, T.Y.; Kim, D.U.; Chang, K.S.; Lee, C.S.; Lee, N. Stable Heating Performance of Carbon Nanotube/silver Nanowire Transparent Heaters. Appl. Surf. Sci. 2020, 510, 145445. [Google Scholar] [CrossRef]
- Sadeque, S.; Candadai, A.; Gong, Y.; Maize, K.; Ziabari, A.K.; Mohammed, A.M.S.; Shakouri, A.; Fisher, T.; Janes, D.B. Transient Self-Heating at Nanowire Junctions in Silver Nanowire Network Conductors. IEEE Trans. Nanotechnol. 2018, 17, 1171–1180. [Google Scholar] [CrossRef]
Sample | 1# | 2# | 3# | 4# | 5# |
---|---|---|---|---|---|
Sputtering time (min) | - | 10 | 20 | 30 | 40 |
Average Resistance (Ω/sq) | 53.2 | 37.4 | 19.3 | 20.1 | 21.7 |
NUF * (%) | 18.0 | 12.1 | 7.0 | 10.4 | 14.1 |
Reduction rate of resistance (%) | - | 29.7 | 63.7 | 62.2 | 59.2 |
Time (day) | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
---|---|---|---|---|---|---|---|---|---|
R1# (Ω/sq.) | 53.2 | 53.8 | 54.5 | 59 | 63 | 71 | 80 | 100 | 125.2 |
R2# (Ω/sq.) | 37.4 | 37.8 | 38.0 | 39.1 | 41.0 | 43.9 | 46.2 | 49.3 | 51.1 |
R3# (Ω/sq.) | 19.3 | 19.3 | 19.3 | 19.5 | 20.0 | 20.1 | 20.2 | 20.4 | 21.0 |
R4# (Ω/sq.) | 20.1 | 20.1 | 20.1 | 20.3 | 20.6 | 20.7 | 20.9 | 21.0 | 21.5 |
R5# (Ω/sq.) | 21.7 | 21.7 | 21.7 | 21.7 | 21.9 | 22 | 22.3 | 22.5 | 22.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Wu, W. Investigation of Silver Nanowire Transparent Heated Films Possessing the Application Scenarios for Electrothermal Ceramics. Coatings 2023, 13, 607. https://doi.org/10.3390/coatings13030607
Hu Y, Wu W. Investigation of Silver Nanowire Transparent Heated Films Possessing the Application Scenarios for Electrothermal Ceramics. Coatings. 2023; 13(3):607. https://doi.org/10.3390/coatings13030607
Chicago/Turabian StyleHu, Yefu, and Weimin Wu. 2023. "Investigation of Silver Nanowire Transparent Heated Films Possessing the Application Scenarios for Electrothermal Ceramics" Coatings 13, no. 3: 607. https://doi.org/10.3390/coatings13030607