The Influence of the Ion Implantation on the Degradation Level of the Coated Particles of Nuclear Fuel Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. p-TRISO
2.2. Methods
3. Results
3.1. Verification of the Level of Damage to the p-TRISO Fuel Covering Layers Structure after 1st and 5th Year of Irradiation
3.2. Verification of the Level of Damage to the p-TRISO Fuel Covering Layers Structure after 3rd Year of Irradiation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fütterer, M.A.; Fu, L.; Sink, C.; de Groot, S.; Pouchon, M.; Kim, Y.W.; Carre, F.; Tachibana, Y. Study of the very high temperature reactor system. Prog. Nucl. Energy 2014, 77, 266–281. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, L.; Guo, Q.; Cao, J.; Tong, J. Numerical solutions for the kinematic model of pebble flow velocity profiles and its applications in pebble-bed nuclear reactor. J. Nucl. Sci. Technol. 2017, 54, 991–1001. [Google Scholar] [CrossRef]
- Xhonneux, A.; Druska, C.; Struth, S.; Allelein, H.J. Calculation of the fission product release for the HTR-10 based on its operation history. Proc. HTR 2014, 2014, HTR 2014-5-181. [Google Scholar]
- Kirk, M.A.; Li, M.; Xu, D.; Wirth, B.D. Predicting neutron damage using TEM with in situ ion irradiation and computer modelling. J. Nucl. Mater. 2017, 498, 199–212. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, X.; Saeedi, A.M.A.; Cheng, W.; Guo, C.; Liao, B.; Zhang, X.; Ying, M.; Gehring, G.A. Study of the radiation damage caused by ion implantation in ZnO and its relations to magnetism. Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 455, 7–12. [Google Scholar] [CrossRef]
- Egeland, G.W.; Valdez, J.A.; Maloy, S.A.; McClellan, K.J.; Sickafus, K.E.; Bond, G.M. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption. J. Nucl. Mater. 2013, 435, 77–87. [Google Scholar] [CrossRef]
- Abyshev, B.; Kozlovskiy, A.L.; Zhumadilov, K.S.; Trukhanov, A.V. Study of radiation embitterment and degradation processes of Li2ZrO3 ceramic under irradiation with swift heavy ions. Ceramics 2022, 5, 13–23. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM The Stopping and Range of Ions in Matter. Available online: srim.org (accessed on 26 February 2023).
- Niwase, K. Raman spectroscopy for quantitative analysis of point defects and defect clusters in irradiated graphite. Int. J. Spectrosc. 2012, 2012, 197609. [Google Scholar] [CrossRef] [Green Version]
- Bokobza, L.; Bruneel, J.L.; Couzi, M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolytic graphite, multilayer Graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc. 2014, 74, 57–63. [Google Scholar] [CrossRef]
- Berka, J.; Hlincik, T.; Viden, I.; Hudsky, T.; Vit, J. The design and utilization of a high-temperature helium loop and other facilities for the study of advanced gas-cooled reactors in the Czech Republic. Prog. Nucl. Energy 2015, 85, 156–163. [Google Scholar] [CrossRef]
- Fang, C.; Bao, X.; Yang, C.; Yang, Y.; Cao, J. The R&D of HTGR high temperature helium sampling loop: From HTR-10 to HTR-PM. Nucl. Eng. Des. 2016, 306, 192–197. [Google Scholar] [CrossRef]
- Niwase, K.; Tanabe, T. Defect structure and amorphization of graphite irradiated by D+ and He+. Mater. Trans. JIM 1993, 34, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Krajewska, Z.M.; Buchwald, T.; Tokarski, T.; Gudowski, W. Front-end investigations of the coated particles of nuclear fuel samples—Ion polishing method. Nucl. Eng. Technol. 2022, 54, 1935–1946. [Google Scholar] [CrossRef]
- Cetnar, J.; Gudowski, W.; Wallenius, J. MCB: A continuous energy Monte Carlo Burnup simulation code. Actin. Fission Prod. Partit. Transmutat. 1999, 30, 523–527, EUR 18898 EN, OECD/NEA. [Google Scholar]
- Lopez-Honorato, E.; Meadows, P.J.; Xiao, P. Fluidized bed chemical vapor deposition of pyrolytic carbon—I. Effect of deposition conditions on microstructure. Carbon 2009, 47, 396–410. [Google Scholar] [CrossRef]
- Yoshida, M.; Tanabe, T.; Ohno, N.; Yoshimi, M.; Takamura, S. High temperature irradiation damage of carbon materials studies by laser Raman spectroscopy. J. Nucl. Mater. 2009, 386–388, 841–843. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, K.W.; Choi, D.M.; Noh, S.J.; Kim, H.S.; Lee, C.h.E. Spectroscopic study of energetic helium -ion irradiation effects on nuclear graphite tiles. Nucl. Inst. Methods Phys. Res. B 2016, 368, 5–8. [Google Scholar] [CrossRef]
- Zhang, H.; Lopez-Honorato, E.; Xiao, P. Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship between microstructure and mechanical properties. Carbon 2015, 91, 346–357. [Google Scholar] [CrossRef]
- Morris, R.N.; Hunn, J.D.; Baldwin Ch, A.; Montgomery, F.; Gerczak, T.J.; Demkowicz, P.A. Initial results from safety testing of US AGR-2 irradiation test fuel. Nucl. Eng. Des. 2017, 329, 124–133. [Google Scholar] [CrossRef]
- Morris, R.N.; Baldwin, C.h.A.; Demkowicz, P.A.; Hunn, J.D.; Reber, E.L. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests. Nucl. Eng. Des. 2016, 306, 24–35. [Google Scholar] [CrossRef] [Green Version]
Ion Energy | Fluence [ions/cm2] | DPA | Year of Neutron Irradiation |
---|---|---|---|
Ne+ (160 keV) | 3.8 × 1016 | 8 | 1 |
1.1 × 1017 | 23 | 3 | |
1.9 × 1017 | 40 | 5 | |
He+ (160 keV) | 1.05 × 1018 | 24 | 3 |
Fluence | Position | Width | ID/IG | ID/IG Area | ||
---|---|---|---|---|---|---|
D-Band | G-Band | D-Band | G-Band | |||
before implantation | 1309 ± 0.4 | 1583.8 ± 1.1 | 140.5 ± 3.1 | 106 ± 2.3 | 1.69 ± 0.03 | 2.05 ± 0.03 |
1st year of irradiation | 1348.7 ± 7.1 | 1551.7 ± 12.6 | 461.8 ± 26.9 | 133.8 ± 19.6 | 3.85 ± 0.58 | 18.38 ± 5.0 |
5th year of irradiation | 1373.3 ± 5.4 | 1537.7 ± 3.6 | 432.4 ± 16.1 | 153.9 ± 10.5 | 4.85 ± 0.77 | 18.74 ± 5.44 |
Fluence | Position | Width | ID/IG | ID/IG Area | ||
---|---|---|---|---|---|---|
D-Band | G-Band | D-Band | G-Band | |||
before implantation | 1315.6 ± 1.5 | 1578.2 ± 0.6 | 243.3 ± 3.2 | 129 ± 2.5 | 1.56 ± 0.06 | 3.34 ± 0.25 |
1st year of irradiation | 1332.2 ± 8.6 | 1529.4 ± 8.2 | 426.5 ± 24.8 | 177.6 ± 16.2 | 2.85 ± 0.56 | 9.05 ± 3.9 |
5th year of irradiation | 1371.7 ± 5.5 | 1544.9 ± 4.5 | 441.0 ± 18.6 | 147.1 ± 14.1 | 5.29 ± 0.98 | 21.91 ± 8.0 |
Fluence | Position | Width | ID/IG | ID/IG Area | ||
---|---|---|---|---|---|---|
D-Band | G-Band | D-Band | G-Band | |||
before implantation | 1315.6 ± 0.7 | 1587.9 ± 0.9 | 228.3 ± 14.2 | 115.1 ± 7.4 | 1.68 ± 0.06 | 2.68 ± 0.66 |
3rd year of Ne+ irradiation | 1347.2 ± 10.4 | 1556.8 ± 14.1 | 445.1 ± 52.6 | 130.9 ± 22.6 | 3.43 ± 0.95 | 17.0 ± 8.79 |
3rd year of He+ irradiation | 1340.4 ± 6.5 | 1567.6 ± 4.5 | 483.6 ± 45.7 | 137.2 ± 12.8 | 3.7 ± 0.82 | 17.39 ± 6.95 |
Fluence | Position | Width | ID/IG | ID/IG Area | ||
---|---|---|---|---|---|---|
D-Band | G-Band | D-Band | G-Band | |||
before implantation | 1309.9 ± 1.7 | 1585.3 ± 2.7 | 188.6 ± 18.4 | 105.5 ± 7.8 | 1.69 ± 0.08 | 3.16 ± 0.63 |
3rd year of Ne+ irradiation | 1332.5 ± 3.7 | 1573 ± 3.2 | 334.9 ± 15.1 | 145.5 ± 5.5 | 2.69 ± 0.17 | 8.97 ± 0.89 |
3rd year of He+ irradiation | 1323.8 ± 2.5 | 1578.3 ± 2.2 | 332.8 ± 22.6 | 129.7 ± 11.1 | 2.64 ± 0.19 | 9.59 ± 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, Z.M.; Buchwald, T.; Droździel, A.; Gudowski, W.; Pyszniak, K.; Tokarski, T.; Turek, M. The Influence of the Ion Implantation on the Degradation Level of the Coated Particles of Nuclear Fuel Samples. Coatings 2023, 13, 556. https://doi.org/10.3390/coatings13030556
Krajewska ZM, Buchwald T, Droździel A, Gudowski W, Pyszniak K, Tokarski T, Turek M. The Influence of the Ion Implantation on the Degradation Level of the Coated Particles of Nuclear Fuel Samples. Coatings. 2023; 13(3):556. https://doi.org/10.3390/coatings13030556
Chicago/Turabian StyleKrajewska, Zuzanna M., Tomasz Buchwald, Andrzej Droździel, Wacław Gudowski, Krzysztof Pyszniak, Tomasz Tokarski, and Marcin Turek. 2023. "The Influence of the Ion Implantation on the Degradation Level of the Coated Particles of Nuclear Fuel Samples" Coatings 13, no. 3: 556. https://doi.org/10.3390/coatings13030556
APA StyleKrajewska, Z. M., Buchwald, T., Droździel, A., Gudowski, W., Pyszniak, K., Tokarski, T., & Turek, M. (2023). The Influence of the Ion Implantation on the Degradation Level of the Coated Particles of Nuclear Fuel Samples. Coatings, 13(3), 556. https://doi.org/10.3390/coatings13030556