Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications
Abstract
1. Introduction
2. Characteristics of Polymer Waveguides
3. Polymer Materials for Integrated Optics and Fabrication Methods
4. Polymer WG-Based Sensors
4.1. Polymer WG-Based Low-Cost Biosensors
4.1.1. Selectivity
4.1.2. Limit of Detection
4.1.3. Stability
4.1.4. Repeatability
4.2. Polymer WG-Based Gas Sensors
4.3. Polymer WG-Based Temperature Sensors
4.4. Polymer WG-Based Mechanical Sensors
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Paquet, C.; Kumacheva, E. Nanostructured polymers for photonics. Materialstoday 2008, 11, 48–56. [Google Scholar] [CrossRef]
- Khan, M.; Rahlves, M.; Lachmayer, R.; Roth, B. Low-cost fabrication of polymer based micro-optical devices for application in illumination, sensing, and optical interconnects. In Proceedings of the Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019. [Google Scholar]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys. Lett. 2020, 17, 076201. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. Optical elements based on silicon photonics. Comput. Opt. 2019, 43, 1079–1083. [Google Scholar] [CrossRef]
- Butt, M.A.; Kozlova, E.S. Multiport optical power splitter design based on coupled-mode theory. J. Phys. Conf. Ser. 2019, 1368, 022006. [Google Scholar] [CrossRef]
- Butt, M.A.; Kozlova, E.S.; Khonina, S.N. Conditions of a single-mode rib channel waveguide based on dielectric TiO2/SiO2. Comput. Opt. 2017, 41, 494–498. [Google Scholar] [CrossRef]
- Ma, H.; Jen, A.-Y.; Dalton, L. Polymer-based optical waveguides: Materials, processing, and devices. Adv. Mater. 2002, 14, 1339–1365. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J. Flexographic and inkjet printing of polymer optical waveguides for fully integrated sensor systems. Procedia Technol. 2014, 15, 521–529. [Google Scholar] [CrossRef]
- Han, T.; Madden, S.; Zhang, M.; Charters, R.; Luther-Davies, B. Low loss high index contrast nanoimprinted polysiloxane waveguides. Opt. Express 2009, 17, 2623–2630. [Google Scholar] [CrossRef]
- Hiltunen, J.; Kokkonen, A.; Puustinen, J.; Hiltunen, M.; Lappalainen, J. UV-imprinted single-mode waveguides with low loss at visible wavelength. IEEE Photonics Technol. Lett. 2013, 25, 996–998. [Google Scholar] [CrossRef]
- Wang, S.; Vaidyanathan, V.; Borden, B. Polymer optical channel waveguide components fabricated by using a laser direct writing system. J. App. Sci. Eng. Technol. 2009, 3, 47–52. [Google Scholar]
- Rezem, M.; Gunther, A.; Rahlves, M.; Roth, B.; Reithmeier, E. Hot embossing of polymer optical waveguides for sensing applications. Procedia Technol. 2014, 15, 514–520. [Google Scholar] [CrossRef]
- Butt, M. Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness—A brief exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Jiang, M.; Chen, C.; Wang, X.; Wang, F.; Zhang, D.; Yi, Y. Three dimensional polymer waveguide using hybrid lithography. Appl. Opt. 2015, 54, 8412–8416. [Google Scholar] [CrossRef] [PubMed]
- Dangel, R.; Hofrichter, J.; Horst, F.; Jubin, D.; Porta, A.; Meier, N.; Soganci, I.; Weiss, J.; Offrein, B. Polymer waveguides for electro-optical integration in data centers and high-performance computers. Opt. Express 2015, 23, 4736–4750. [Google Scholar] [CrossRef] [PubMed]
- Marin, Y.; Nannipieri, T.; Oton, C.; Pasquale, F. Current status and future trends of photonic-integrated FBG interrogators. J. Light. Technol. 2018, 36, 946–953. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.; Wada, K.; Agarwal, A.; Hu, J. Mid-infrared integrated photonics on silicon:A perspective. Nanophotonics 2017, 7, 393–420. [Google Scholar] [CrossRef]
- Sharma, T.; Wang, J.; Kaushik, B.; Cheng, Z.; Kumar, R.; Wei, Z.; Li, X. Review of Recent Progress on Silicon Nitride-Based Photonic Integrated Circuits. IEEE Access 2020, 8, 195436–195446. [Google Scholar] [CrossRef]
- Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Simonyte, I.; Vizbaras, A.; Vizbaras, K. III-V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 mm wavelength range. Sensors 2017, 17, 1788. [Google Scholar] [CrossRef]
- Prajzler, V.; Jasek, P.; Nekvindova, P. Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS). Microsyst. Technol. 2019, 25, 2249–2258. [Google Scholar] [CrossRef]
- Ibrahim, N.; Riduwan, M.; Rusli, A. Synthesis of Siloxane-polyimide Copolymer with Low Birefringence and Low Loss for Optical Waveguide. J. Phys. Sci. 2019, 30, 103–113. [Google Scholar] [CrossRef]
- Bahadori, M.; Nikdast, M.; Cheng, Q.; Bergman, K. Universal design of waveguide bends in silicon-on-insulator photonics platform. J. Light. Technol. 2019, 37, 3044–3054. [Google Scholar] [CrossRef]
- Sun, X.; Dai, D.; Thylen, L.; Wosinski, L. High-Sensitivity Liquid Refractive-Index Sensor Based on a Mach-Zehnder Interferometer with a Double-Slot Hybrid Plasmonic Waveguide. Opt. Express 2015, 23, 25688. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Luo, Y.; Zhang, W.; Li, C.; Li, L.; Yang, Z.; Xu, P. High-sensitivity refractive index sensor based on Ge-Sb-Se chalcogenide microring resonator. Infrared Phys. Technol. 2021, 116, 103792. [Google Scholar] [CrossRef]
- Wu, N.; Xia, L. Side-Mode Suppressed Filter Based on Anangular Grating-Subwavelength Grating Microring Resonator with High Flexibility in Wavelength Design. Appl. Opt. 2019, 58, 7174. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642. [Google Scholar] [CrossRef]
- Ramirez, J.; Malhouitre, S.; Gradkowski, K.; Morrissey, P.; O’Brien, P.; Caillaud, C.; Vaissiere, N. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 6100213. [Google Scholar] [CrossRef]
- Van der Tol, J.; Jiao, Y.; Van Engelen, J.; Pogoretskiy, V.; Kashi, A.; Williams, K. InP Membrane on Silicon (IMOS) Photonics. IEEE J. Quantum Electron. 2020, 56, 6300107. [Google Scholar] [CrossRef]
- Available online: https://www.diabetes.co.uk/body/white-blood-cells.html (accessed on 10 January 2023).
- Available online: https://www.gasalarmsystems.co.uk/latest-news/3-little-known-facts-about-flammable-gas-that-could-save-your-life/ (accessed on 10 January 2023).
- Available online: https://www.lihealthcollab.org/news-and-blog/heat-alert--heart-health-at-risk-when-temperatures-rise (accessed on 10 January 2023).
- Huang, K.-H.; Tan, F.; Wang, T.-D.; Yang, Y.-J. A highly sensitive pressure-sensing array for blood pressure estimation assisted by machine-learning techniques. Sensors 2019, 19, 848. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Butt, M.; Khonina, S. Recent advances in wearable optical sensor automation powered by battery versus skin-like battery-free devices for personal healthcare-A review. Nanomaterials 2022, 12, 334. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, W.; Wang, F.; Zhao, D. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites. Sci. Rep. 2016, 6, 36729. [Google Scholar] [CrossRef]
- Park, Y.-J.; Lee, S.; Kim, B.; Kim, J.-H.; So, J.-H.; Koo, H.-J. Impedance study on humidity dependent conductivity of polymer composites with conductive nanofillers. Compos. Part B Eng. 2020, 202, 108412. [Google Scholar] [CrossRef]
- Geiss, R.; Saravi, S.; Sergeyev, A.; Diziain, S.; Setzpfandt, F.; Schrempel, F.; Grange, R.; Kley, E.-B.; Tunnermann, A.; Pertsch, T. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett. 2015, 40, 2715–2718. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, O.; Yoon, D.; Taylor, H. Low-loss optical waveguides in lithium tantalate by vapor diffusion. Appl. Phys. Lett. 1987, 51, 384. [Google Scholar] [CrossRef]
- Butt, M.; Kozlova, E.S.; Khonina, S.N.; Skidanov, R.V. Optical planar waveguide sensor based on (Yb,Nb): RTP/RTP(001) system for the estimation of metal coated cells. CEUR Workshop Proc. 2016, 1638, 16–23. [Google Scholar]
- Butt, M.; Sole, R.; Pujol, M.; Rodenas, A.; Lifante, G.; Choudhary, A.; Murugan, G.; Shepherd, D.; Wilkinson, J.; Aguiló, M.; et al. Fabrication of Y-Splitters and Mach-Zehnder Structures on (Yb,Nb):RbTiOPO4/RbTiOPO4 Epitaxial Layers by Reactive Ion Etching. J. Light. Technol. 2015, 33, 1863–1871. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Q.; Yue, Y.; Yan, Y.; Beausoleil, R.; Willner, A. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express 2012, 20, 1685–1690. [Google Scholar] [CrossRef]
- Senichev, A.; Peana, S.; Martin, Z.; Yesilyurt, O.; Sychev, D.; Lagutchev, A.; Boltasseva, A.; Shalaev, V. Silicon nitride waveguides with intrinsic single-photon emitters for integrated Quantum photonics. ACS Photonics 2022, 9, 3357–3365. [Google Scholar] [CrossRef]
- Sacher, W.; Luo, X.; Yang, Y.; Chen, F.-D.; Lordello, T.; Mak, J.; Liu, X.; Hu, T.; Xue, T.; Lo, P.-Q.; et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Opt. Express 2019, 27, 37400–37418. [Google Scholar] [CrossRef]
- Takenaka, M.; Nakano, Y. InP photonic wire waveguide using InAlAs oxide cladding layer. Opt. Express 2007, 15, 8422–8427. [Google Scholar] [CrossRef]
- Soleimannezhad, F.; Nikoufard, M.; Mahdian, M. Low-loss indium phosphide-based hybrid plasmonic waveguide. Microw. Opt. Technol. Lett. 2021, 63, 2242–2251. [Google Scholar] [CrossRef]
- Rahlves, M.; Rezem, M.; Boroz, K.; Schlangen, S.; Reithmeier, E.; Roth, B. Flexible, fast, and low-cost production process for polymer based diffractive optics. Opt. Express 2015, 23, 3614–3622. [Google Scholar] [CrossRef] [PubMed]
- Beche, B.; Pelletier, N.; Gaviot, E.; Zyss, J. Single-mode TE00-TM00 optical waveguides on SU-8 polymer. Opt. Commun. 2004, 230, 91–94. [Google Scholar] [CrossRef]
- Elmogi, A.; Bosman, E.; Missinne, J.; Steenberge, V. Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography. Opt. Mater. 2016, 52, 26–31. [Google Scholar] [CrossRef]
- Ibrahim, M.; Kassim, N.; Mohammad, A.; Lee, S.-Y.; Chin, M.-K. Single mode optical waveguides based on photodefinable benzocyclobutene (BCB 4024-40) polymer. Microw. Opt. Technol. Lett. 2006, 49, 479–481. [Google Scholar] [CrossRef]
- Available online: http://www.chemoptics.co.kr/eng/main/main.php (accessed on 10 January 2023).
- Buestrich, R.; Kahlenberg, F.; Popall, M.; Dannberg, P.; Muller-Fiedler, R.; Rosch, O. ORMOCER (R) s for optical interconnection technology. J. Sol-Gel Sci. Technol. 2001, 20, 181–186. [Google Scholar] [CrossRef]
- Bamiedakis, N.; Beals, J.; Penty, R.; White, I.; DeGroot, J.; Clapp, T. Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE J. Quantum Electron. 2009, 45, 415–424. [Google Scholar] [CrossRef]
- Bosman, E.; Van Steenberge, G.; Christiaens, W.; Hendrickx, N.; Vanfleteren, J.; Van Daele, P. Active optical links embedded in flexible substrates. In Proceedings of the 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 1150–2013. [Google Scholar]
- Cai, Z.; Qiu, W.; Shao, G.; Wang, W. A new fabrication method for all-PDMS waveguides. Sens. Actuators A Phys. 2013, 204, 44–47. [Google Scholar] [CrossRef]
- Hirose, C.; Fukuda, N.; Sassa, T.; Ishibashi, K.; Ochiai, T.; Furukawa, R. Fabrication of a fluorophore-doped cylindrical waveguide structure using elastomers for visual detection of stress. Fibers 2019, 7, 37. [Google Scholar] [CrossRef]
- Kalathimekkad, S.; Missinne, J.; Schaubroeck, D.; Mandamparambil, R. Alcohol vapor sensor based on fluorescent dye-doped optical waveguides. IEEE Sens. J. 2015, 15, 76–81. [Google Scholar] [CrossRef]
- Marques, C.; Pospori, A.; Demirci, G.; Çetinkaya, O.; Gawdzik, B.; Antunes, P.; Bang, O.; Mergo, P.; André, P.; Webb, D. Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms. Sensors 2017, 17, 891. [Google Scholar] [CrossRef]
- Woyessa, G.; Theodosiou, A.; Markos, C.; Kalli, K.; Bang, O. Single Peak Fiber Bragg Grating Sensors in Tapered Multimode Polymer Optical Fibers. J. Light. Technol. 2021, 39, 6934–6941. [Google Scholar] [CrossRef]
- Pasquardini, L.; Cennamo, N.; Malleo, G.; Vanzetti, L.; Zeni, L.; Bonamini, D.; Salvia, R.; Bassi, C.; Bossi, A. A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent. Sensors 2021, 21, 3443. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, R.A.; Abdul, K.K.; Yuan, L. Advances in Surface Plasmon Resonance-Based Plastic Optical Fiber Sensors. IETE Tech. Rev. 2022, 39, 442–459. [Google Scholar] [CrossRef]
- Cennamo, N.; Pesavento, M.; Zeni, L. A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing. Sens. Actuators B Chem. 2021, 331, 129393. [Google Scholar] [CrossRef]
- Rajamani, A.S.; Divagar, M.; Sai, V. Plastic fiber optic sensor for continuous liquid level monitoring. Sens. Actuators A Phys. 2019, 296, 192–199. [Google Scholar] [CrossRef]
- Prajzler, V.; Neruda, M.; Jasek, P.; Nekvindova, P. The properties of free-standing epoxy polymer multi-mode optical waveguides. Microsyst. Technol. 2019, 25, 257–264. [Google Scholar] [CrossRef]
- Kagami, M.; Kawasaki, A.; Ito, H. A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections. J. Light. Technol. 2001, 19, 1949–1955. [Google Scholar] [CrossRef]
- Klein, S.; Barsella, A.; Leblond, H.; Bulou, H.; Fort, A.; Andraud, C.; Lemercier, G.; Mulatier, J.; Dorkenoo, K. One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Appl. Phys. Lett. 2005, 86, 211118. [Google Scholar] [CrossRef]
- Wong, W.; Zhou, J.; Pun, E. Low-loss polymeric optical waveguides using electron-beam direct writing. Appl. Phys. Lett. 2001, 78, 2110–2112. [Google Scholar] [CrossRef]
- Choi, C.-G.; Kim, J.-T.; Jeong, M.-Y. Fabrication of optical waveguides in thermosetting polymers using hot embossing. In Proceedings of the Integrated Photonics Research, Washington, DC, USA, 15–20 June 2003. [Google Scholar]
- Choi, C.-G.; Han, S.-P.; Kim, B.-C.; Ahn, S.-H.; Jeong, M.-Y. Fabrication of large-core 1 × 16 optical power splitters in polymers using hot-embossing process. IEEE Photon. Technol. Lett. 2003, 15, 825–827. [Google Scholar] [CrossRef]
- Zheng, L.; Keppler, N.; Zhang, H.; Behrens, P.; Roth, B. Planar polymer optical waveguide with metal-organic framework coating for carbon dioxide sensing. Adv. Mater. Technol. 2022, 7, 2200395. [Google Scholar] [CrossRef]
- Fan, R.; Hooker, R. Tapered polymer single-mode waveguides for mode transformation. J. Light. Technol. 1999, 17, 466–474. [Google Scholar] [CrossRef]
- Kobayashi, J.; Yagi, S.; Hatakeyama, Y.; Kawakami, N. Low loss polymer optical waveguide replicated from flexible film stamp made of polymeric material. Jpn. J. Appl. Phys. 2013, 52, 072501. [Google Scholar] [CrossRef]
- Bruck, R.; Muellner, P.; Kataeva, N.; Koeck, A.; Trassl, S.; Rinnerbauer, V.; Schmidegg, K.; Hainberger, R. Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process. Appl. Opt. 2013, 52, 4510–4514. [Google Scholar] [CrossRef]
- Shneidman, A.; Becker, K.; Lukas, M.; Torgerson, N.; Wang, C.; Reshef, O.; Burek, M.; Paul, K.; McLellan, J.; Loncar, M. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics 2018, 5, 1839–1845. [Google Scholar] [CrossRef]
- Shao, J.; Chen, X.L.; Li, X.; Tian, H.; Wang, C.; Lu, B. Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China Technol. Sci. 2019, 62, 175–198. [Google Scholar] [CrossRef]
- Šakalys, R.; Kho, K.; Keyes, T. A reproducible, low cost microfluidic microcavity array SERS platform prepared by soft lithography from a 2 photon 3D printed template. Sens. Actuators B Chem. 2021, 340, 129970. [Google Scholar] [CrossRef]
- Azadegan, R.; Nagarajan, P.; Yao, D.; Ellis, T. Polymer micro hot embossing for the fabrication of three-dimensional millimeter-wave components. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Charleston, SC, USA, 1–5 June 2009; pp. 1–4. [Google Scholar]
- Aldada, L.; Shacklette, L. Advances in polymer integrated optics. IEEE J. Sel. Top. Quant. 2000, 6, 54–68. [Google Scholar] [CrossRef]
- Andolfi, L.; Greco, S.L.M.; Tierno, D.; Chignola, R.; Martinelli, M.; Giolo, E.; Luppi, S.; Delfino, I.; Zanetti, M.; Battistella, A.; et al. Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids. Acta Biomater. 2019, 94, 505–513. [Google Scholar] [CrossRef]
- Norland Optical Adhesive 73. Available online: https://www.amstechnologies-webshop.com/media/pdf/09/bb/1a/NOA-73-TDS-Datasheet.pdf (accessed on 13 February 2023).
- Santiago-Alvarado, A.; Cruz-Felix, A.; Iturbide, F.; Licona-Morán, B. Physical-chemical properties of PDMS samples used in tunable lenses. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 563–571. [Google Scholar]
- Johnston, D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017. [Google Scholar] [CrossRef]
- Cai, D.K.; Neyer, A.; Kuckuk, R.; Heise, H.M. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt. Mater. 2008, 30, 1157–1161. [Google Scholar] [CrossRef]
- Khan, Y.; Butt, M.; Khonina, S.; Kazanskiy, N. Thermal sensor based on polydimethylsiloxane polymer deposited on low-index-contrast dielectric photonic crystal structure. Photonics 2022, 9, 770. [Google Scholar] [CrossRef]
- Demir, M.M.; Koynov, K.; Akbey, Ü.; Bubeck, C.; Park, I.; Lieberwirth, I.; Wegner, G. Optical Properties of Composites of PMMA and Surface-Modified Zincite Nanoparticles. Macromolecules 2007, 40, 1089–1100. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Hezma, A.M.; El-khodary, A.; Elzayat, A.M. Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 2016, 3, 10–15. [Google Scholar] [CrossRef]
- Ishiyama, C.; Higo, Y. Effects of humidity on Young’s modulus in poly(methyl methacrylate). J. Polym. Sci. Part B Polym. Phys. 2002, 40, 460–465. [Google Scholar] [CrossRef]
- Min, R.; Hu, X.; Pereira, L.; Soares, M.S.; Silva, L.C.B.; Wang, G.; Martins, L.; Qu, H.; Antunes, P.; Marques, C.; et al. Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications. Opt. Laser Technol. 2022, 147, 107626. [Google Scholar] [CrossRef]
- Beadie, G.; Brindza, M.; Flynn, R.A.; Rosenberg, A.; Shirk, J.S. Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4–1.6 μm. Appl. Opt. 2015, 54, F139–F143. [Google Scholar] [CrossRef]
- NOA68. Available online: https://www.norlandprod.com/adhesives/noa%2068.html (accessed on 13 February 2023).
- Sabzekar, M.; Chenar, M.P.; Maghsoud, Z.; Mostaghisi, O.; García-Payo, M.C.; Khayet, M. Cyclic olefin polymer as a novel membrane material for membrane distillation applications. J. Membr. Sci. 2021, 621, 118845. [Google Scholar] [CrossRef]
- Khanarian, G. Optical properties of cyclic olefin copolymers. Opt. Eng. 2001, 40, 1024–1029. [Google Scholar] [CrossRef]
- Schmid, S. Electrostatically Actuated All-Polymer Microbeam Resonators—Characterization and Application; ETH Zurich: Zurich, Switzerland, 2009. [Google Scholar]
- Lee, B.; Choi, K.-H.; Yoo, K. Innovative SU-8 Lithography Techniques and Their Applications. Micromachines 2015, 6, 1–18. [Google Scholar] [CrossRef]
- Wolter, H.; Storch, W.; Ott, H. New Inorganic/Organic Copolymers (Ormocer®s) for Dental Applications. MRS Online Proc. Libr. 1994, 346, 143. [Google Scholar] [CrossRef]
- Schmidt, V.; Kuna, L.; Satzinger, V.; Houbertz, R.; Jakopic, G.; Leising, G. Application of two-photon 3D lithography for the fabrication of embedded ORMOCER waveguides. In Proceedings of the Optoelectronic Integrated Circuits IX, San Jose, CA, USA, 22–24 January 2007. [Google Scholar]
- Declerck, P.; Houbertz, R.; Jakopic, G.; Passinger, S.; Chichkov, B. High Refractive Index Inorganic-Organic Hybrid Materials for Photonic Applications. MRS Online Proc. Libr. 2007, 1007, 1007. [Google Scholar] [CrossRef]
- Mahdi, E.M.; Chaudhuri, A.K.; Tan, J.-C. Capture and immobilisation of iodine (I 2) utilising polymer-based ZIF-8 nanocomposite membranes. Mol. Syst. Des. Eng. 2016, 1, 122–131. [Google Scholar] [CrossRef]
- Keppler, N.C.; Hindricks, K.D.J.; Behrens, P. Large refractive index changes in ZIF-8 thin films of optical quality. RSC Adv. 2022, 12, 5807–5815. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface. Sensors 2021, 21, 378. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Jin, K.; Yuan, C.; Sun, J.; He, F.; Fang, Q. A novel one-pot synthesized organosiloxane: Synthesis and conversion to directly thermo-crosslinked polysiloxanes with low dielectric constants and excellent thermostability. Polym. Chem. 2015, 6, 5984–5988. [Google Scholar] [CrossRef]
- Kane, C.F.; Krchnavek, R.R. Benzocyclobutene optical waveguides. IEEE Photonics Technol. Lett. 1995, 7, 535–537. [Google Scholar] [CrossRef]
- Guo, S.; Gustafsson, G.; Hagel, O.J.; Arwin, H. Determination of refractive index and thickness of thick transparent films by variable-angle spectroscopic ellipsometry: Application to benzocyclobutene films. Appl. Opt. 1996, 35, 1693–1699. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Wang, C.; Wang, X.-B.; Yi, Y.; Sun, X.; Wang, F.; Zhang, D. Metal-Printing Defined Thermo-Optic Tunable Sampled Apodized Waveguide Grating Wavelength Filter Based on Low Loss Fluorinated Polymer Material. Appl. Sci. 2019, 10, 167. [Google Scholar] [CrossRef]
- NOA63. Available online: https://www.norlandprod.com/adhesives/noa%2063.html (accessed on 13 February 2023).
- Bucknall, C.B.; Gilbert, A.H. Toughening tetrafunctional epoxy resins using polyetherimide. Polymer 1989, 30, 213–217. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Bi, S.; Wang, Y.; Chen, X.; Qiu, L.; Sun, J. Optically Transparent Antibacterial Films Capable of Healing Multiple Scratches. Adv. Funct. Mater. 2014, 24, 403–411. [Google Scholar] [CrossRef]
- Jiang, F.; Cakmak, M. Real time optical and mechano-optical studies during drying and uniaxial stretching of Polyetherimide films from solution. Polymer 2015, 68, 168–175. [Google Scholar] [CrossRef]
- Vinogradova, I.; Andrienko, D.; Lulevich, V.V.; Nordschild, S.; Sukhorukov, G.B. Young’s Modulus of Polyelectrolyte Multilayers from Microcapsule Swelling. Macromolecules 2004, 37, 1113–1117. [Google Scholar] [CrossRef]
- Kim, J.-H.; Fujita, S.; Shiratori, S. Design of a thin film for optical applications, consisting of high and low refractive index multilayers, fabricated by a layer-by-layer self-assembly method. Colloids Surf. A Physicochem. Eng. Asp. 2006, 284–285, 290–294. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, M.; Wu, Z.; Morthier, G. Investigation of Grating-Assisted Trimodal Interferometer Biosensors Based on a Polymer Platform. Sensors 2018, 18, 1502. [Google Scholar] [CrossRef] [PubMed]
- Bosc, D.; Maalouf, A.; Messaad, K.; Mahé, H.; Bodiou, L. Advanced analysis of optical loss factors in polymers for integrated optics circuits. Opt. Mater. 2013, 35, 1207–1212. [Google Scholar] [CrossRef]
- Kaino, T. Plastic optical fibers. In Polymers in Optics: Physics, Chemistry, and Applications: A Critical Review; Society of Photo Optical Loaction: Bellingham, WA, USA, 1996. [Google Scholar]
- Butt, A.M.; Kazanskiy, N.L.; Khonina, S.N. Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes. Curr. Appl. Phys. 2020, 20, 1274–1280. [Google Scholar] [CrossRef]
- Butt, A.M.; Voronkov, G.; Grakhova, E.; Kutluyarov, R.; Kazanskiy, N.; Khonina, S. Environmental Monitoring: A Comprehensive Review on optical waveguide and fiber-based sensors. Biosensors 2022, 12, 1038. [Google Scholar] [CrossRef]
- Butt, A.M. Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio. Photonics Lett. Pol. 2020, 12, 82–84. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square micro-ring cavities. Laser Phys. 2020, 30, 016205. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Hybrid plasmonic waveguide-assisted metal-insulator-metal ring resonator for refractive index sensing. J. Mod. Opt. 2018, 65, 1135–1140. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens. J. 2020, 3, 1355–1362. [Google Scholar] [CrossRef]
- Butt, M.A.; Degtyarev, S.A.; Khonina, S.N.; Kazanskiy, N.L. An evanescent field absorption gas sensor at mid-IR 3.39 um wavelength. J. Mod. Opt. 2017, 64, 1892–1897. [Google Scholar] [CrossRef]
- Sonawane, H.; Singh, A.; Gupta, A.; Tiwari, M.; Gaur, S. Polymer based surface plasmon resonance sensors: Theoretical study of sensing characteristics. Mater. Proc. 2022, 67, 726–731. [Google Scholar] [CrossRef]
- Sahraeibelverdi, T.; Guo, L.; Veladi, H.; Malekshahi, M. Polymer ring resonator with a partially tapered waveguide for biomedical sensing: Computational study. Sensors 2021, 21, 5017. [Google Scholar] [CrossRef]
- Morarescu, R.; Pal, P.; Beneitez, N.; Missinne, J.; Steenberge, G.; Bienstman, P.; Morthier, G. Fabrication and characterization of high-optical-quality factor hybrid polymer microring resonators operating at very near infrared wavelengths. IEEE Photonics J. 2016, 8, 6600409. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Z.; Yao, H.; Deng, J.; Wu, J.; Hu, Z.; Chen, K. Compact and highly sensitive refractive index sensor based on embedded double-ring resonator using Vernier effect. IEEE Photonics J. 2022, 15, 6800109. [Google Scholar] [CrossRef]
- Xiao, Y.; Hofmann, M.; Wang, Z.; Sherman, S.; Zappe, H. Design of all-polymer asymmetric Mach-Zehnder interferometer sensors. Appl. Opt. 2016, 55, 3566–3573. [Google Scholar] [CrossRef]
- Ji, L.; Yang, S.; Shi, R.; Fu, Y.; Su, J.; Wu, C. Polymer waveguide coupled surface plasmon refractive index sensor: A theoretical study. Photonic Sens. 2020, 10, 353–363. [Google Scholar] [CrossRef]
- Mancuso, M.; Goddard, J.; Erickson, D. Nanoporous polymer ring resonators for biosensing. Opt. Express 2011, 20, 245–255. [Google Scholar] [CrossRef]
- Dullo, F.; Lindecrantz, S.; Jagerska, J.; Hansen, J.; Engqvist, M.; Solbo, S.; Helleso, O. Sensitive on-chip methane detection with a cryptophane- A cladded Mach-Zehnder interferometer. Opt. Express 2015, 23, 31564–31573. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Yi, Y.; Cao, Y.; Lv, J.; Yang, Y.; Wang, F.; Sun, X.; Zhang, D. A polymer asymmetric Mach-Zehnder interferometer sensor model based on electrode thermal writing waveguide technology. Micromachines 2019, 10, 628. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, C. Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express 2019, 6, 056503. [Google Scholar] [CrossRef]
- Ceylan, K.H.; Kulah, H.; Ozgen, C. Thin film biosensors. In Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Bahabady, A.; Olyaee, S. Two-curve-shaped biosensor for detecting glucose concentration and salinity of seawater based on photonic crystal nano-ring resonator. Sens. Lett. 2015, 13, 774–777. [Google Scholar] [CrossRef]
- Xu, D.-X.; Vachon, M.; Densmore, A.; Ma, R.; Janz, S.; Delâge, A.; Lapointe, J.; Cheben, P.; Schmid, J.H.; Post, E.; et al. Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. Opt. Express 2010, 18, 22867–22879. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C.; Dai, Q.; Kong, L. Wearable and biomedical applications. Sensors 2019, 19, 3771. [Google Scholar] [CrossRef]
- Ahmed, Z.; Reddy, J.; Malekoshoaraie, M.; Hassanzade, V.; Kimukin, I.; Jain, V.; Chamanzar, M. Flexible optoelectric neural interfaces. Curr. Opin. Biotechnol. 2021, 72, 121–130. [Google Scholar] [CrossRef]
- Ang, L.; Por, L.; Yam, M. Study on different molecular weights of chitosan as an immobilization matrix for a glucose biosensor. PLoS ONE 2013, 8, e70597. [Google Scholar] [CrossRef]
- Bucur, B.; Purcarea, C.; Andreescu, S.; Vasilescu, A. Addressing the selectivity of enzyme biosensors: Solutions and percpectives. Sensors 2021, 21, 3038. [Google Scholar] [CrossRef]
- Lavin, A.; Vicente, J.; Holgado, M.; Laguna, M.; Casquel, R.; Santamaria, B.; Maigler, M.; Hernandez, A.; Ramirez, Y. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors 2018, 18, 2038. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Wang, E.; Tai, C.-S.; Chiu, Y.-C.; Li, C.-W.; Lin, Y.-R.; Lee, T.-H.; Huang, C.-W.; Chen, J.-C.; Chen, W. Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens. Bioelectron. 2020, 155, 112111. [Google Scholar] [CrossRef] [PubMed]
- Bruck, R.; Hainberger, R. Polymer waveguide based biosensor. In Photonics, Devices, and Systems IV; SPIE: Bellingham, WA, USA, 2008. [Google Scholar]
- Wang, C.; Yi, P.; Li, J.; Dong, H.; Chen, C.; Zhang, D.; Shen, H.; Fu, B. Polymer optical waveguide grating-based biosensor to detect effective drug concentrations of Ginkgolide A for Inhibition of PMVEC apoptosis. Biosensors 2021, 11, 264. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hiltunen, J.; Liedert, C.; Pearce, S.; Charlton, M.; Hakalahti, L.; Karioja, P.; Myllyla, R. Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides. Opt. Express 2012, 20, 20309–20317. [Google Scholar] [CrossRef]
- Walter, J.-G.; Eilers, A.; Alwis, L.; Roth, B.; Bremer, K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors 2020, 20, 2889. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Hollenbach, U.; Pfirrmann, S.; Ostrizinski, U.; Pfeiffer, K.; Hengsbach, S.; Mohr, J. Photo-structurable polymer for interlayer single-mode waveguide fabrication by femtosecond laser writing. Opt. Mater. 2017, 66, 110–116. [Google Scholar] [CrossRef]
- Yi, L.; Changyuan, Y. Highly strechable hybrid silica/polymer optical fiber sensors for large-strain and high-temperature application. Opt. Express 2019, 27, 20107–20116. [Google Scholar] [CrossRef]
- Wang, T.; Hu, S.; Chamlagain, B.; Hong, T.; Zhou, Z.; Weiss, S.; Xu, Y.-Q. Visualizing light scattering in silicon waveguides with black phosphorus photodetectors. Adv. Mater. 2016, 28, 7162–7166. [Google Scholar] [CrossRef]
- Mirnaziry, S.; Wolff, C.; Steel, M.; Eggleton, B.; Poulton, C. Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides. Opt. Express 2016, 24, 4786–4800. [Google Scholar] [CrossRef]
- Kumaar, S.; Sivasubramanian, A. Analysis of BCB and SU 8 photonic waveguide in MZI architecture for point-of-care devices. Sens. Int. 2023, 4, 100207. [Google Scholar] [CrossRef]
- Ramirez, J.; Lechuga, L.; Gabrielli, L.; Hernandez-Figueroa, H. Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors. Opt. Express 2015, 23, 11985. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.-G.; Alwis, L.; Roth, B.; Bremer, K. All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D. Sensors 2020, 20, 6771. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Chen, S.-L.; Song, C.; Huang, T.; Guo, L. Ultrahigh Q polymer microring resonators for biosensing applications. IEEE Photonics J. 2019, 11, 4200110. [Google Scholar] [CrossRef]
- Girschikofsky, M.; Rosenberger, M.; Belle, S.; Brutschy, M.; Waldvogel, S.; Hellmann, R. Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour. Sens. Actuators B Chem. 2012, 171–172, 338–342. [Google Scholar] [CrossRef]
- Zaky, Z.; Ahmed, A.; Shalaby, A.; Aly, A. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. Sci. Rep. 2020, 10, 9736. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Modelling of rib channel waveguides based on silicon-on-sapphire at 4.67 um wavelength for evanescent field gas absorption sensor. Optik 2018, 168, 692–697. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Khonina, S.; Butt, M. Polarization-insensitive hybrid plasmonic waveguide design for evanescent field absorption gas sensor. Photonic Sens. 2021, 11, 279–290. [Google Scholar] [CrossRef]
- Wanguemert-Perez, J.; Cheben, P.; Ortega-Monux, A.; Alonso-Ramos, C.; Perez-Galacho, D.; Halir, R.; Molina-Fernandez, I.; Xu, D.-X.; Schmid, J. Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Opt. Lett. 2014, 39, 4442–4445. [Google Scholar] [CrossRef]
- Nylabder, C.; Armgrath, M.; Lundstrom, I. An ammonia detector based on a conducting polymer. In Proceedings of the International Meeting on Chemical Sensors, Fukuoka, Japan, 19–22 September 1983; pp. 203–207. [Google Scholar]
- Hopper, R.; Popa, D.; Udrea, F.; Ali, S.; Stanley-Marbell, P. Miniaturized thermal acoustic gas sensor based on a CMOS microhotplate and MEMS microphone. Sci. Rep. 2022, 12, 1690. [Google Scholar] [CrossRef]
- Sadaoka, Y.; Sakai, Y.; Manabe, T. Detection of CO2 using a solid-state electrochemical sensor based on sodium ionic conductors. Sens. Actuators B Chem. 1993, 15, 166–170. [Google Scholar] [CrossRef]
- Lin, Z.-D.; Young, S.-J.; Chang, S.-J. CO2 gas sensors based on carbon nanotube thin films using a simple transfer method on flexible substrate. IEEE Sens. J. 2015, 15, 7017–7020. [Google Scholar] [CrossRef]
- Gheorghe, A.; Lugier, O.; Ye, B.; Tanase, S. Metal-organic framework based systems for CO2 sensing. J. Mater. Chem. C 2021, 9, 16132–16142. [Google Scholar] [CrossRef]
- Nugroho, F.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L.; Fanta, A.; Kadkhodazadeh, S.; Wagner, J.; Antosiewicz, T.; et al. Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 2019, 18, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Bamiedakis, N.; Hutter, T.; Penty, R.; Elliott, S. PCB-integrated optical waveguide sensors: An ammonia gas sensor. J. Light. Technol. 2013, 31, 1628. [Google Scholar] [CrossRef]
- Batumalay, M.; Johari, A.; Khudus, M.I.M.A.; Bin Jali, M.H.; Al Noman, A.; Harun, S.W. Microbottle resonator for temperature sensing. J. Phys. Conf. Ser. 2019, 1371, 012006. [Google Scholar] [CrossRef]
- Kong, Y.; Wei, Q.; Liu, C.; Wang, S. Nanoscale temperature sensor based on Fano resonance in metal-insulator-metal waveguide. Opt. Commun. 2017, 384, 85–88. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. A compact design of a modified Bragg grating filter based on a metal-insulator-metal waveguide for filtering and temperature sensing applications. Optik 2022, 251, 168466. [Google Scholar] [CrossRef]
- Butt, M.; Kazanskiy, N.; Khonina, S. Revolution in flexible wearable electronics for temperature and pressure monitoring—A review. Electronics 2022, 11, 716. [Google Scholar] [CrossRef]
- Roth, G.-L.; Hessler, S.; Kefer, S.; Girchikofsky, M.; Esen, C.; Hellmann, R. Femtosecond laser inscription of waveguides and Bragg gratings in transparent cyclic olefin copolymers. Opt. Express 2020, 28, 18077–18084. [Google Scholar] [CrossRef]
- Missinne, J.; Beneitez, N.; Lamberti, A.; Chiesura, G.; Luyckx, G.; Mattelin, M.-A.; Paepegem, W.; Steenberge, G. Thin and flexible polymer photonic sensor foils for moniitoring composite structures. Adv. Eng. Mater. 2018, 20, 1701127. [Google Scholar] [CrossRef]
- Butt, M.; Kazanskiy, N.; Khonina, S. Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal. Biosensors 2022, 12, 497. [Google Scholar] [CrossRef]
- Eldada, L.; Blomquist, R.; Maxfield, M.; Pant, D.; Boudoughian, G.; Poga, C.; Norwood, R. Thermooptic planar polymer Bragg grating OADMs with broad tuning range. IEEE Photon. Technol. Lett. 1999, 11, 448–450. [Google Scholar] [CrossRef]
- Yun, B.; Hu, G.; Cui, Y. Third-order polymer waveguide Bragg grating array by using conventional contact lithography. Opt. Commun. 2014, 330, 113–116. [Google Scholar] [CrossRef]
- Binfeng, Y.; Guohua, H.; Yiping, C. Polymer waveguide Bragg grating Fabry-Perot filter using a nanoimprinting technique. J. Opt. 2014, 16, 105501. [Google Scholar] [CrossRef]
- Song, F.; Xiao, J.; Xie, A.; Seo, S.-W. A polymer waveguide grating sensor integrated with a thin-film photodetector. J. Opt. 2014, 16, 015503. [Google Scholar] [CrossRef]
- Lin, H.; Xing, Y.; Chen, X.; Zhang, S.; Forsberg, E.; He, S. Polymer-based planar waveguide chirped Bragg grating for high-resolution tactile sensing. Opt. Express 2022, 30, 20871–20882. [Google Scholar] [CrossRef]
- Rosenberger, M.; Eisenbeil, W.; Schmauss, B.; Hellmann, R. Simultaneous 2D strain sensing using polymer planar Bragg gratings. Sensors 2015, 15, 4264–4272. [Google Scholar] [CrossRef]
- Wang, M.; Hiltunen, J.; Uusitalo, S.; Puustinen, J.; Lappalainen, J.; Karioja, P.; Myllylä, R. Fabrication of optical inverted-rib waveguides using UV-imprinting. Microelectron. Eng. 2011, 88, 175–178. [Google Scholar] [CrossRef]
- Beneitez, N.; Missinne, J.; Shi, Y.; Chiesura, G.; Luyckx, G.; Degrieck, J.; Steenberge, G. Highly sensitive waveguide Bragg grating temperature sensor using hybrid polymers. IEEE Photonics Technol. Lett. 2016, 28, 1150. [Google Scholar] [CrossRef]
- Khan, M.; Farooq, H.; Wittmund, C.; Klimke, S.; Lachmayer, R.; Renz, F.; Roth, B. Polymer optical waveguide sensor based on Fe-Amino-Triazole complex molecular switches. Polymers 2021, 13, 195. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Zhao, P.; Wang, X.; Qu, S. High sensitive temperature sensor based on a polymer waveguide integrated in an optical fibre micro-cavity. J. Opt. 2018, 20, 015801. [Google Scholar] [CrossRef]
- Niu, D.; Wang, L.; Xu, Q.; Jiang, M.; Wang, X.; Sun, X.; Wang, F.; Zhang, D. Ultra-sensitive polymeric waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer. Appl. Opt. 2019, 58, 1276–1280. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Yue, J.; Zhang, X.; Wu, Z.; Zhang, T.; Chen, C.; Fei, T. Optical waveguide sensors for measuring human temperature and humidity with gel polymer electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 60384–60392. [Google Scholar] [CrossRef]
- Nazempour, R.; Zhang, Q.; Fu, R.; Sheng, X. Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials 2018, 11, 1283. [Google Scholar] [CrossRef]
- Hah, D.; Yoon, E.; Hong, S. An optomechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane. Sens. Actuators 2000, 79, 204–210. [Google Scholar] [CrossRef]
- Ren, Y.; Mormile, P.; Petti, L.; Cross, G. Optical waveguide humidity sensor with symmetric multilayer configuration. Sens. Actuators B Chem. 2001, 75, 76–82. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, B.; Yang, C.; Dai, Q.; Kong, L. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 2019, 29, 1902898. [Google Scholar] [CrossRef]
- Yun, S.; Park, S.; Park, B.; Kim, Y.; Park, S.; Nam, S.; Kyung, K. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv. Mater. 2014, 26, 4474–4480. [Google Scholar] [CrossRef]
- Song, Y.; Peters, K. A self-repairing polymer waveguide sensor. Smart Mater. Struct. 2011, 20, 065005. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Jiang, N.; Yetisen, A.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S. Highly stretchable, strain sensing hydrogel optical fibers. Adv. Mater. 2016, 28, 10244–10249. [Google Scholar] [CrossRef]
- Niu, D.; Wang, X.; Sun, S.; Jiang, M.; Xu, Q.; Wang, F.; Wu, Y.; Zhang, D. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer. J. Opt. 2018, 20, 045803. [Google Scholar] [CrossRef]
- Mares, D.; Prajzler, V.; Martan, T.; Jerabek, V. Hybrid polymer–glass planar Bragg grating as a temperature and humidity sensor. Opt. Quantum Electron. 2022, 54, 590. [Google Scholar] [CrossRef]
- Kefer, S.; Rosenberger, M.; Hessler, S.; Girschikofsky, M.; Belle, S.; Roth, G.-L.; Schmauss, B. Fabrication and applications of polymer planar Bragg grating sensors based on cyclic olefin copolymers. In Proceedings of the Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 647–655. [Google Scholar]
- Butt, M.; Khonina, S.; Kazanskiy, N.; Piramidowicz, R. Hybrid metasurface perfect absorbers for temperature and biosensing applications. Opt. Mater. 2022, 123, 111906. [Google Scholar] [CrossRef]
- Li, J.; Zhao, C.; Dong, Q.; Kang, J.; Shen, C.; Wang, D. Multipoint temperature sensor based on PDMS-filled Fabry Perot interferometer with an array-waveguide grating. In Proceedings of the 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar]
- Ramirez, J.; Gabrielli, L.; Lechuga, L.; Hernandez-Figueroa, H. Trimodal Waveguide Demonstration and Its Implementation as a High Order Mode Interferometer for Sensing Application. Sensors 2019, 19, 2821. [Google Scholar] [CrossRef]
- Missinne, J.; Beneitez, N.; Mattelin, M.-A.; Lamberti, A.; Luyckx, G.; Paepegem, W.; Steenberge, G. Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths. Sensors 2018, 18, 2717. [Google Scholar] [CrossRef]
- Butt, M.; Kazanskiy, N.; Khonina, S. On-chip symmetrically and asymmetrically transformed plasmonic Bragg grating formation loaded with a functional polymer for filtering and CO2 gas sensing applications. Measurement 2022, 201, 111694. [Google Scholar] [CrossRef]
- Lim, J.; Kim, S.; Kim, J.-S.; Kim, J.; Kim, Y.; Lim, J.; Im, Y.; Park, J.; Hann, S. Polymer waveguide sensor with tin oxide thin film integrated onto optical-electrical printed circuit board. In Optical Micro-and Nanometrology V; SPIE: Brussels, Belgium, 2014; Volume 9132. [Google Scholar]
- Clevenson, H.; Desjardins, P.; Gan, X.; Englund, D. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity. Appl. Phys. Lett. 2014, 104, 241108. [Google Scholar] [CrossRef]
- Khonina, S.; Kazanskiy, N.; Butt, M.; Kazmierczak, A.; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express 2021, 29, 16584–16594. [Google Scholar] [CrossRef]
- Luan, E.; Yun, H.; Ma, M.; Ratner, D.; Cheung, K.; Chrostowski, L. Label-free biosensing with a multi-box sub-wavelength phase-shifted Bragg grating waveguide. Biomed. Opt. Express 2019, 10, 4825–4838. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Q.; Wu, Z.; Morthier, G.; Zhao, M. Cascaded-Microrings Biosensors Fabricated on a Polymer Platform. Sensors 2019, 19, 181. [Google Scholar] [CrossRef]
- Azuelos, P.; Girault, P.; Lorrain, N.; Poffo, L.; Guendouz, M.; Thual, M.; Lemaitre, J.; Pirasteh, P.; Hardy, I.; Charrier, J. High sensitivity optical biosensor based on polymer materials and using the Vernier effect. Opt. Express 2017, 25, 30799–30806. [Google Scholar] [CrossRef]
- Han, X.; Han, X.; Shao, Y.; Wu, Z.; Liang, Y.; Teng, J.; Bo, S.; Morthier, G.; Zhao, M. Polymer integrated waveguide optical biosensor by using spectral splitting effect. Photonic Sens. 2017, 7, 131–139. [Google Scholar] [CrossRef]
- Melnik, E.; Strasser, F.; Muellner, P.; Heer, R.; Mutinati, G.; Koppitsch, G.; Lieberzeit, P.; Laemmerhofer, M.; Hainberger, R. Surface modification of integrated optical MZI sensor arrays using inkjet printing technology. Procedia Eng. 2016, 168, 337–340. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Macedo, L.; Frizera, A.; Pontes, M.J. Polymer Optical Fiber Multimaterial: Flexible and Customizable Approach in Sensors Development. IEEE Photonics Technol. Lett. 2022, 34, 611–614. [Google Scholar] [CrossRef]
- Bahin, L.; Tourlonias, M.; Bueno, M.-A.; Sharma, K.; Rossi, R.M. Smart textiles with polymer optical fibre implementation for in-situ measurements of compression and bending. Sens. Actuators A Phys. 2023, 350, 114117. [Google Scholar] [CrossRef]
- Woyessa, G.; Pedersen, J.K.; Nielsen, K.; Bang, O. Enhanced pressure and thermal sensitivity of polymer optical fiber Bragg grating sensors. Opt. Laser Technol. 2020, 130, 106357. [Google Scholar] [CrossRef]
- Wei, H.; Chen, M.; Krishnaswamy, S. Three-dimensional-printed Fabry–Perot interferometer on an optical fiber tip for a gas pressure sensor. Appl. Opt. 2020, 59, 2173–2178. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, T.; Zhang, W. Integrated FPI-FBG Composite All-Fiber Sensor for Simultaneous Measurement of Liquid Refractive Index and Temperature. Opt. Lasers Eng. 2018, 111, 167–171. [Google Scholar] [CrossRef]
- Chen, M.; He, T.; Zhao, Y.; Yang, G. Ultra-Short Phase-Shifted Fiber Bragg Grating in a Microprobe for Refractive Index Sensor with Temperature Compensation. Opt. Laser Technol. 2023, 157, 108672. [Google Scholar] [CrossRef]
- Korganbayev, S.; Sypabekova, M.; Amantayeva, A.; González-Vila, Á.; Caucheteur, C.; Saccomandi, P.; Tosi, D. Optimization of Cladding Diameter for Refractive Index Sensing in Tilted Fiber Bragg Gratings. Sensors 2022, 22, 2259. [Google Scholar] [CrossRef] [PubMed]
- Voronkov, G.; Zakoyan, A.; Ivanov, V.; Iraev, D.; Stepanov, I.; Yuldashev, R.; Grakhova, E.; Lyubopytov, V.; Morozov, O.; Kutluyarov, R. Design and Modeling of a Fully Integrated Microring-Based Photonic Sensing System for Liquid Refractometry. Sensors 2022, 22, 9553. [Google Scholar] [CrossRef] [PubMed]
- Voronkov, G.; Aleksakina, Y.; Ivanov, V.; Zakoyan, A.; Stepanov, I.; Grakhova, E.; Butt, M.; Kutluyarov, R. Enhancing the Performance of the Photonic Integrated Sensing System by Applying Frequency Interrogation. Nanomaterials 2023, 13, 193. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ding, L.; Tian, Z.; Song, Y.; Xiong, R.; Zhang, C.; Han, J.; Jiang, S. Potential New Material for Optical Fiber: Preparation and Characterization of Transparent Fiber Based on Natural Cellulosic Fiber and Epoxy. Int. J. Biol. Macromol. 2023, 224, 1236–1243. [Google Scholar] [CrossRef]
- Islam, M.D.; Liu, S.; Boyd, D.A.; Zhong, Y.; Nahid, M.M.; Henry, R.; Taussig, L.; Ko, Y.; Nguyen, V.Q.; Myers, J.D.; et al. Enhanced mid-wavelength infrared refractive index of organically modified chalcogenide (ORMOCHALC) polymer nanocomposites with thermomechanical stability. Opt. Mater. 2020, 108, 110197. [Google Scholar] [CrossRef]
- Afroozeh, A.; Zeinali, B. Improving the Sensitivity of New Passive Optical Fiber Ring Sensor Based on Meta-Dielectric Materials. Opt. Fiber Technol. 2022, 68, 102797. [Google Scholar] [CrossRef]
Polymer | Chemical Formula | Young Modulus | Optical Loss | Transparency Region, nm | Refractive Index |
---|---|---|---|---|---|
NOA 73 | N/A | 11 MPa [77] | N/A | 370–1250 [78] | 1.559 [78] |
PDMS | (CH3)3SiO[Si(CH3)2O]nSi(CH3)3 [79] | 1.32–2.97 MPa [80] | 0.027 dB/cm [81] | 400–1600 [81] | n(T) = 1.4176 − 4.5 × 10−4T [82] |
PMMA [9,83] | (C5H8O2)n [84] | 3–3.7 GPa [85] | 2.5 dB/cm [83] | 400–700 with C-H absorption peak at 630 nm [86] | 1.48–1.505 [87] |
NOA 68 | N/A | N/A | N/A | 450–1250 [88] | 1.54 [88] |
COC | cyclic olefin copolymer | 29–237 MPa [89] | 0.5 dB/cm (830 nm); 0.7 dB/cm (1550 nm) [90] | N/A | 1.5–1.54 [90] |
SU-8 | epoxy polymer | 4.54 GPa at 19 kHz to 5.24 GPa at 318 kHz [91] | 1.36 and 2.01 dB/cm (TE00 and TM00) [46] | N/A | 1.67 at UV [92] |
Ormocer | inorganic-organic hybrid polymers | 1–17,000 MP [93] | 0.64 dB/cm [94] | N/A | From 1.5382 to 1.59 at 633 nm [95] |
ZIF-8 | 2-Methylimidazole zinc salt | 3 GPa [96] | N/A | N/A | 1.355 ± 0.004 at 589 nm [97] |
PHMB | polihexanide | N/A | N/A | N/A | 1.48–1.5 [98] |
BCB | benzocyclobutene | 9.58 GPa [99] | 0.81 dB/cm at 1300 nm [100] | 1.5589 at λ = 632 nm; 1.5489 at λ = 838 nm [101] | |
FSU-8 | fluorinated epoxy resin | N/A | N/A | N/A | 1.495 to 1.565 at 1550 nm [102] |
NOA 63 | N/A | N/A | N/A | 350–1250 | 1.56 [103] |
PEI | polyethylenimine | 3.5–3.6 GPa [104] | N/A | 400–800 [27,105] | 1.66 at 546 nm [106] |
PSS | polystyrene sulfonate | N/A | N/A | ||
PAH | polyallylamine hydrochloride | 100 MPa [107] | N/A | N/A | 1.51 at 550 nm [108] |
Ma-P 1205 | n/a | N/A | N/A | N/A | 1.644 at 633 nm [109] |
PMATRIFE | poly(2,2,2) MethAcrylate of TRIFluoro-Ethyle | N/A | N/A | N/A | 1.409 [110] |
PC [33] | plastic polycarbonate | N/A | 10 dB/m | 750–850 | 1.586 [111] |
CYTOP [33] | amorphous perfluorinated polymer | 10 db/km | 950–1100 | 1.34 at 587.6 nm | |
PDLLA | poly(d,l-lactide) | N/A | From 0.4 dB/cm on 500 nm to 0.12 dB/cm on 800 nm with C-H adsorbtion peak at 720–740 nm [45] | 500–850 [86] | N/A |
Polymer | Sensor Design | Application | Temperature Range (°C) | Sensitivity | Fabrication Method | Numerical/Experimental | Ref. |
---|---|---|---|---|---|---|---|
NOA 73 | MZI | Temperature | - | 30.8 nm/°C | Wet etching | Experimental | [180] |
Gel polymer | MZI | Temperature | 36–38 | 0.5π rad/°C | Bottom metal-printing | Experimental | [181] |
NOA 73 | MZI | -Temperature | 25–75 | −431 pm/°C | CMOS | Experimental | [189] |
PDMS | PhC | Temperature | 10–90 | 0.109 nm/°C | - | Numerical | [82] |
PMMA | BG | Temperature | −10–70 | −48.6 pm/°C | Direct laser writing | Experimental | [190] |
NOA68 | Planar WG | Temperature | 18–35 | 0.08 mW/°C | Hot embossing | Experimental | [178] |
COC | BG | Temperature | 30–160 | −7.3 pm/K | Single writing step | Experimental | [191] |
PDMS | Metasurface | Temperature | 30–60 | −0.18 nm/°C | - | Numerical | [192] |
PDMS | FPI-AWG | Temperature | 30–40 | −0.854 dB/°C | - | Experimental | [193] |
SU-8 | Trimodal WG interferometer | Temperature | 22–27 | 0.0586 dB/°C | Direct laser writing | Experimental | [194] |
Ormocer | BG | Temperature | 20–110 | −150 pm/°C | Imprinting | Experimental | [195] |
ZIF-8 | Planar WG | CO2 | - | 2.5 μW/5 vol% | Hot embossing | Experimental | [68] |
PHMB | Modified BG | CO2 | - | 226 pm/ppm | - | Numerical | [196] |
- | Planar WG | CO | - | - | NIL | Experimental | [197] |
PMMA | Photonic crystal nanocavity | - | 287 ppb/ | EBL | Experimental | [198] | |
PHMB | Plasmonic WG | CO2 | - | 135.95 pm/ppm | Numerical | [199] | |
PHMB | Metasurface | CO2 | - | 17.3 pm/ppm | Numerical | [98] | |
BCB and SU8 | MZI | Biosensing | - | 19,280 nm/RIU and 16,500 nm/RIU | N/A | Numerical | [147] |
FSU-8 and PMMA | BG | Drug conc. | - | 1606.2 nm/RIU | Direct UV writing | Experimental | [139] |
PMMA and NOA 63 | Planar WG structure | Vitamin D | - | 0.752 pixel/nM | Hot embossing and doctor blading | Experimental | [149] |
PMMA and NOA 63 | Planar optical multi-mode WG | C-reactive protein | - | 608.6 nm/RIU | Hot embossing and doctor blading | Experimental | [141] |
PEI, PSS and PAH | Phase-shifted BG | NaCl | - | 579.2 nm/RIU | CMOS | Experimental | [200] |
Ormocore | Micro-ring | Biosensing | - | - | Soft UV NIL | Experimental | [201] |
Ma-P 1205 | Trimodal interferometer | Biosensing | - | 2050 2π/RIU | - | Numerical | [109] |
SU8/PMATRIFE | Ring resonator and MZI | Glucose | - | 17,558 nm/RIU | CMOS | Experimental | [202] |
Ormocore | MZI | Biosensing | - | 104 nm/RIU | - | Numerical | [203] |
PEI-B | MZI | STA-biotin | - | - | Inkjet printing | Experimental | [204] |
PMMA | Polymer optical fiber | Breath and heartbeat | - | Error compared with reference: 1 cpm (breath) 4 bpm (heartbeat) | - | Experimental | [205] |
PMMA | Polymer optical fiber | Smart textile: Bending, compression | - | - | Melt-spinning | Experimental | [206] |
PDMS | Polymer optical fiber | Smart textile: Bending, compression | - | - | Moulding | Experimental | [206] |
PMMA | Polymer optical fiber BG | Pressure | - | Up to 71.9 ± 0.3 μm/MPa | - | Experimental | [207] |
- | Optical fiber-based polymer Fabry–Perot interferometer | Gas pressure | - | 3.959 nm/MPa | 3D-printed | Experimental | [208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. https://doi.org/10.3390/coatings13030549
Khonina SN, Voronkov GS, Grakhova EP, Kazanskiy NL, Kutluyarov RV, Butt MA. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings. 2023; 13(3):549. https://doi.org/10.3390/coatings13030549
Chicago/Turabian StyleKhonina, Svetlana N., Grigory S. Voronkov, Elizaveta P. Grakhova, Nikolay L. Kazanskiy, Ruslan V. Kutluyarov, and Muhammad A. Butt. 2023. "Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications" Coatings 13, no. 3: 549. https://doi.org/10.3390/coatings13030549
APA StyleKhonina, S. N., Voronkov, G. S., Grakhova, E. P., Kazanskiy, N. L., Kutluyarov, R. V., & Butt, M. A. (2023). Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings, 13(3), 549. https://doi.org/10.3390/coatings13030549