Effect of Film Thickness on Microstructural and Magnetic Properties of Lithium Ferrite Films Prepared on Strontium Titanate (001) Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, G.O.; Patton, C.E. Magnetic Properties of Lithium Ferrite Microwave Materials. J. Magn. Magn. Mater. 1978, 9, 299–317. [Google Scholar] [CrossRef]
- Sugimoto, M. The Past, Present, and Future of Ferrites. J. Am. Ceram. Soc. 1999, 82, 269–280. [Google Scholar] [CrossRef]
- Lüders, U.; Barthélémy, A.; Bibes, M.; Bouzehouane, K.; Fusil, S.; Jacquet, E.; Contour, J.-P.; Bobo, J.-F.; Fontcuberta, J.-F.; Fert, A. NiFe2O4: A Versatile Spinel Material Brings New Opportunities for Spintronics. Adv. Mater. 2006, 18, 1733–1736. [Google Scholar] [CrossRef]
- Suzuki, Y. Epitaxial Spinel Ferrite Thin Films. Annu. Rev. Mater. Res. 2001, 31, 265–289. [Google Scholar] [CrossRef]
- Boyraz, C.; Mazumdar, D.; Iliev, M.; Marinova, V.; Ma, J.; Srinivasan, G.; Gupta, A. Structural and magnetic properties of lithium ferrite (LiFe5O8) thin films: Influence of substrate on the octahedral site order. Appl. Phys. Lett. 2011, 98, 012507. [Google Scholar] [CrossRef]
- Wei, J.D.; Knittel, I.; Hartmann, U.; Zhou, Y.; Murphy, S.; Shvets, I.V.; Parker, F.T. Influence of the Antiphase Domain Distribution on the Magnetic Structure of Magnetite Thin Films. Appl. Phys. Lett. 2006, 89, 122517. [Google Scholar] [CrossRef]
- Chen, C.L.; Li, H.P.; Seki, T.; Yin, D.Q.; Sanchez-Santolino, G.; Inoue, K.; Shibata, N.; Ikuhara, Y. Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries. ACS Nano 2018, 12, 2662–2668. [Google Scholar] [CrossRef]
- Udhayakumar, S.; Kumar, G.J.; Kumar, E.S.; Navaneethan, M.; Kamala Bharathi, K. Electrical, Electronic and Magnetic Property Correlation Via Oxygen Vacancy Filling and Scaling-law Analysis in LiFe5O8 Thin Films Prepared by Pulsed Laser Deposition. J. Mater. Chem. C 2022, 10, 15051–15060. [Google Scholar] [CrossRef]
- Liu, X.; Wu, M.; Qu, K.; Gao, P.; Mi, W. Atomic-Scale Mechanism of Grain Boundary Effects on the Magnetic and Transport Properties of Fe3O4 Bicrystal Films. ACS Appl. Mater. Inter. 2021, 13, 6889–6896. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, M.; Lu, L.; Mi, S.B.; Wang, H. Strain-tunable magnetic properties of epitaxial lithium ferrite thin film on MgAl2O4 substrates. J. Mater. Chem. C 2015, 3, 5598–5602. [Google Scholar] [CrossRef]
- Hu, G.; Choi, J.H.; Eom, C.B.; Harris, V.G.; Suzuki, Y. Structural Tuning of the Magnetic Behavior in Spinel-Structure Ferrite Thin Films. Phys. Rev. B 2000, 62, R779–R782. [Google Scholar] [CrossRef]
- Uusi-Esko, K.; Rautama, E.-L.; Laitinen, M.; Sajavaara, T.; Karppinen, M. Control of Oxygen Nonstoichiometry and Magnetic Property of MnCo2O4 Thin Films Grown by Atomic Layer Deposition. Chem. Mater. 2010, 22, 6297–6300. [Google Scholar] [CrossRef]
- Foerster, M.; Rebled, J.M.; Estradé, S.; Sánchez, F.; Peiró, F.; Fontcuberta, J. Distinct Magnetism in Ultrathin Epitaxial NiFe2O4 Films on MgAl2O4 and SrTiO3 Single Crystalline Substrates. Phys. Rev. B 2011, 84, 144422. [Google Scholar] [CrossRef]
- Gao, C.Y.; Cao, C.M.; Zhao, J.Z. Structure and Magnetic Properties of Epitaxial LiFe5O8 Film with Different Growth Temperature. Appl. Phys. A 2019, 125, 566. [Google Scholar] [CrossRef]
- Rigato, F.; Estradé, S.; Arbiol, J.; Peiró, F.; Lüders, U.; Martí, X.; Sánchez, F.; Fontcuberta, J. Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mater. Sci. Eng. B 2007, 144, 43–48. [Google Scholar] [CrossRef]
- Praus, R.B.; Leibold, B.; Gross, G.M.; Habermeier, H.U. Thickness dependent properties of La0.67Ca0.33MnO3 thin films. Appl. Surf. Sci. 1999, 138–139, 40–43. [Google Scholar] [CrossRef]
- Matvejeff, M.; Lippmaa, M. Growth of InFeCoO4 thin films on SrTiO3 and MgO substrates. J. Cryst. Growth 2010, 312, 2386–2392. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.F.; Dai, J.Y. Microstructure and magnetic properties of a novel spinel (Zn,Co)Fe2O4 thin film on the SrTiO3 substrate. J. Cryst. Growth 2010, 313, 26–29. [Google Scholar] [CrossRef]
- Moussy, J.B.; Gota, S.; Bataille, A.; Guittet, M.J.; Gautier-Soyer, M.; Delille, F.; Dieny, B.; Ott, F.; Doan, T.; Warin, P.; et al. Thickness dependence of anomalous magnetic behavior in epitaxial Fe3O4 thin films: Effect of density of antiphase boundaries. Phys. Rev. B 2004, 70, 174448. [Google Scholar] [CrossRef]
- Mi, S.B.; Zhang, R.Y.; Lu, L.; Liu, M.; Wang, H.; Jia, C.L. Atomic-scale structure and formation of antiphase boundaries in α-Li0.5Fe2.5O4 thin films on MgAl2O4 substrates. Acta Mater. 2017, 127, 178–184. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Y.; Yao, T.; Tao, A.; Yan, X.; Li, X.; Chen, C.; Ma, X.L.; Ye, H. Atomic Origin of Magnetic Coupling of Antiphase Boundaries in Magnetite Thin Films. J. Mater. Sci. Technol. 2022, 107, 92–99. [Google Scholar] [CrossRef]
- Lüders, U.; Bibes, M.; Bobo, J.-F.; Cantoni, M.; Bertacco, R.; Fontcuberta, J. Enhanced Magnetic Moment and Conductive Behavior in NiFe2O4 Spinel Ultrathin Film. Phys. Rev. B 2005, 71, 134419. [Google Scholar] [CrossRef]
- Gatel, C.; Warot-Fonrose, B.; Matzen, S.; Moussy, J.B. Magnetism of CoFe2O4 Ultrathin Films on MgAl2O4 Driven by Epitaxial Strain. Appl. Phys. Lett. 2013, 103, 092405. [Google Scholar] [CrossRef]
- Hoppe, M.; Döring, S.; Gorgoi, M.; Cramm, S.; Müller, M. Enhanced Ferrimagnetism in Auxetic NiFe2O4 in the Crossover to the Ultrathin-Film Limit. Phys. Rev. B 2015, 91, 054418. [Google Scholar] [CrossRef]
- Du, K.F.; Zhang, C.B.; Ma, Y.S.; Wang, P.L.; Yu, R.; Li, W.M.; Zheng, K.Y.; Cheng, X.H.; Tang, D.Y.; Deng, B.W.; et al. An Iron-base Oxygen-Evolution Electrode for High-temperature Electrolyzers. Nat. Commun. 2023, 14, 253. [Google Scholar] [CrossRef]
- Hu, Y.Z. α-LiFe5O8: A Promising Iron-Based Anode Material for Lithium-ion Batteries. Mater. Sci. Eng. B 2023, 297, 116792. [Google Scholar] [CrossRef]
- Subash, S.; Udhayakumar, S.; Kumaresan, L.; Patro, L.N.; Kumaran, V.; Senthil Kumar, E.; Navaneethan, M.; Kyung Kim, D.; Kamala Bharathi, K. Ordered LiFe5O8 Thin Films Prepared by Pulsed Laser Deposition as an Anode Material for All-solid Thin Film Batteries. Electrochim. Acta 2023, 454, 142318. [Google Scholar] [CrossRef]
- Howard, S.A.; Yau, J.K.; Anderson, H.U. Structural Characteristics of Sr1−xLaxTi3+δ as a Function of Oxygen Partial Pressure at 1400 °C. J. Appl. Phys. 1989, 65, 1492–1498. [Google Scholar] [CrossRef]
- Jain, S.C.; Harker, A.H.; Cowley, R.A. Misfit Strain and Misfit Dislocations in Lattice Mismatched Epitaxial Layers and Other Systems. Philos. Mag. A 1997, 75, 1461–1515. [Google Scholar] [CrossRef]
- Regmi, S.; Li, Z.; Srivastava, A.; Mahat, R.; Shambhu, K.C.; Rastogi, A.; Galazka, Z.; Datta, R.; Mewes, T.; Gupta, A. Structural and Magnetic Properties of NiFe2O4 Thin Films Grown on Isostructural Lattice-matched Substrates. Appl. Phys. Lett. 2021, 118, 152402. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Martínez-Goyeneche, L.; Álvarez-Alonso, P.; Fernández, A. Enhancement the Perpendicular Magnetic Anisotropy of Nanopatterned Hard/soft Bilayer Magnetic Antidot Arrays for Spintronic Application. Nanotechnology 2020, 31, 485708. [Google Scholar] [CrossRef] [PubMed]
- Rodewald, J.; Thien, J.; Ruwisch, K.; Bertram, F.; Kuepper, K.; Wollschläge, J. Enhanced magnetization of ultrathin NiFe2O4 films on SrTiO3 related to cation disorder and anomalous strain. Phys. Rev. Mater. 2020, 4, 064404. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Zhang, M.; Zhang, X.; Niu, W.; Gao, M.; Wang, X.; Du, J.; Zhang, R.; Xu, Y. Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films. J. Magn. Magn. Mater. 2017, 432, 472–476. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, R.Y.; Lu, L.; Mi, S.B.; Liu, M.; Wang, H.; Wu, S.Q.; Jia, C.L. Atomic-Scale Investigation of Spinel LiFe5O8 Thin Films on SrTiO3 (001) Substrates. J. Mater. Sci. Technol. 2020, 40, 31–38. [Google Scholar] [CrossRef]
- Fritsch, D.; Ederer, C. Epitaxial Strain Effects in the Spinel Ferrites CoFe2O4 and NiFe2O4 from First Principles. Phys. Rev. B 2010, 82, 104117. [Google Scholar] [CrossRef]
- Yang, J.; Lei, J.F.; Du, K.; Zheng, X.D.; Jin, X.J. The Microwave Magnetism of Epitaxy LiFe5O8 Thin Film Modulated by Thickness. Curr. Appl. Phys. 2020, 20, 589–592. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Zhang, R.; Lu, L.; Li, J.; Zhang, S. Effect of Film Thickness on Microstructural and Magnetic Properties of Lithium Ferrite Films Prepared on Strontium Titanate (001) Substrates. Coatings 2023, 13, 2097. https://doi.org/10.3390/coatings13122097
Liu K, Zhang R, Lu L, Li J, Zhang S. Effect of Film Thickness on Microstructural and Magnetic Properties of Lithium Ferrite Films Prepared on Strontium Titanate (001) Substrates. Coatings. 2023; 13(12):2097. https://doi.org/10.3390/coatings13122097
Chicago/Turabian StyleLiu, Kun, Ruyi Zhang, Lu Lu, Jiankang Li, and Songyou Zhang. 2023. "Effect of Film Thickness on Microstructural and Magnetic Properties of Lithium Ferrite Films Prepared on Strontium Titanate (001) Substrates" Coatings 13, no. 12: 2097. https://doi.org/10.3390/coatings13122097
APA StyleLiu, K., Zhang, R., Lu, L., Li, J., & Zhang, S. (2023). Effect of Film Thickness on Microstructural and Magnetic Properties of Lithium Ferrite Films Prepared on Strontium Titanate (001) Substrates. Coatings, 13(12), 2097. https://doi.org/10.3390/coatings13122097