Sol-Gel-Derived Functional Coatings for Pre-Sowing Seed Treatment
Abstract
:1. Introduction
2. Materials and Methods
- -
- number of living plants.
- -
- degree of damage on the VIR scale:
- 1—no lesion;
- 3—mild symptoms;
- 5—typical symptoms;
- 7—severe symptoms, necrosis;
- 9—absence of shoots.
3. Experimental Results
3.1. FexOy NP Morphology
3.2. Structural Characterization of Sol-Gel Compositions
3.3. Study of Biological Activity of the Synthesized Sol-Gel Compositions
4. Discussion
4.1. Structure Formation in Silicas and Sol-Gel Compositions
4.2. The Prospects for Using Silica Sols and Sol-Gel Compositions for Pre-Sowing Treatment of Cabbage Seeds of Different Subspecies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, A.G.; Amirkhani, M.; Hill, H. Modern seed technology. Agriculture 2021, 11, 630. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Mayton, H.; Amirkhani, M.; Yang, D.; Donovan, S.; Taylor, A.G. Tomato seed coat permeability: Optimal seed treatment chemical properties for targeting the embryo with implications for internal seed-borne pathogen control. Agriculture 2021, 11, 199. [Google Scholar] [CrossRef]
- Mallick, S.; Mohanty, S.; Das, S.; Beura, J.K.; Jyoth, G.B.N. Effect of polymer coating on seed quality during storage of groundnut seeds. Pharma Innov. J. 2022, 11, 1396–1401. [Google Scholar]
- Reddy, B.P.; Bara, B.M.; Krishina, R.Y. Effect of polymer seed coating and seed treatment on seed quality parameters and yield attributing characters of hybrid maize (Zea mays L.). Int. J. Curr. Microbiol. App. Sci. 2019, 8, 1175–1182. [Google Scholar] [CrossRef]
- Sohail, M.; Pirzada, T.; Opperman, C.H.; Khan, S.A. Recent advances in seed coating technologies: Transitioning toward sustainable agriculture. Green Chem. 2022, 24, 6052–6085. [Google Scholar] [CrossRef]
- Fu, Y.; Bhunia, A.K.; Yao, Y. Alginate-based antimicrobial coating reduces pathogens on alfalfa seeds and sprouts. Food Microbiol. 2022, 103, 103954. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Skorik, Y.A.; Thakur, V.K.; Moradi Pour, M.; Tamanadar, E.; Noghabi, S.S. Encapsulation of Plant Biocontrol Bacteria with Alginate as a Main Polymer Material. Int. J. Mol. Sci. 2021, 22, 11165. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Moradi Pour, M.; Ait Barka, E. A Novel Route for Double-Layered Encapsulation of Streptomyces fulvissimus Uts22 by Alginate–Arabic Gum for Controlling of Pythium aphanidermatum in Cucumber. Agronomy 2022, 12, 655. [Google Scholar] [CrossRef]
- Aisvarya, S.; Kalyanasundaram, M.; Kannan, M.; Lakshmanam, A.; Srinivasan, T. Dual activity of biogenic zinc oxide nanoparticles as a protectant against seed weevil and growth promoter in maize seeds. In Book of Extended Abstracts, Proceedings of the GPCP 2021, Coimbatory, India, 8–10 December 2021; Centre for Plant Protection Studies, Tamil Nadu Agriculture University: Coimbatory, India, 2021; pp. 137–138. [Google Scholar]
- Singh, A.; Sengar, R.S.; Rajput, V.D.; Agrawal, S.; Ghazaryan, K.; Minkina, T.; Al-Tawaha, A.R.M.; Al-Zoubi, O.M.; Habeeb, T. Impact of zinc oxide nanoparticles on seed germination characteristics in rice (Oryza sativa L.) under salinity stress. J. Ecol. Eng. 2023, 24, 142–156. [Google Scholar] [CrossRef]
- Palmqvist, N.G.M.; Seisenbaeva, G.A.; Svedlindh, P.; Kessler, V.G. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanosc. Res. Lett. 2017, 12, 631. [Google Scholar] [CrossRef]
- Goswami, P.; Mathur, J.; Srivastava, N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 2022, 8, e09908. [Google Scholar] [CrossRef]
- Zaim, N.S.H.B.H.; Tan, H.L.; Rahman, S.M.A.; Rahman, S.M.A.; Fitrah, A.B.N.; Osman, M.S.; Thakur, V.K.; Radacsi, N. Recent Advances in Seed Coating Treatment Using Nanoparticles and Nanofibers for Enhanced Seed Germination and Protection. J. Plant Growth Regul. 2023, 42, 7374–7402. [Google Scholar] [CrossRef]
- Chakkalakkal, N.D.; Thomas, M.; Chittillapilly, P.S.; Sujith, A.; Anjali, P. Electrospun polymer nanocomposite membrane as a promising seed coat for controlled release of agrichemicals and improved germination: Towards a better agricultural prospect. J. Clean. Prod. 2022, 377, 134479. [Google Scholar] [CrossRef]
- Ismail, I.; Bakar, F.A.; Ling, T.H.; Zain ZH, M.; Radacsi, N. Morphology Conductivity Evaluation of Electrospun Polyacrylic Acid (PAA) Microfiber. Mater. Today Proc. 2019, 17, 574–583. [Google Scholar] [CrossRef]
- Lozhnikova, V.N.; Slastya, I.V. Growth of spring barley and activity endogenous phytohormones under the influence of silicon compounds. Agric. Biol. (Sel’skokhozyaistvennaya Biol.) 2010, 3, 102–107. Available online: http://www.agrobiology.ru/3-2010lozhnikova.html (accessed on 20 November 2023).
- Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci. 2014, 21, 13–17. [Google Scholar] [CrossRef]
- Sembada, A.A.; Maki, S.; Faizal, A.; Fukuhara, T.; Suzuki, T.; Lenggoro, I.W. The Role of Silica Nanoparticles in Promoting the Germination of Tomato (Solanum lycopersicum) Seeds. Nanomaterials 2023, 13, 2110. [Google Scholar] [CrossRef]
- Shilova, O.A.; Khamova, T.V.; Panova, G.G.; Anikina, L.M.; Artem’eva, A.M.; Kornyukhin, D.L. Using the sol–gel technology for the treatment of barley seeds. Glass Phys. Chem. 2018, 44, 26–32. [Google Scholar] [CrossRef]
- Borak, B. Sol-gel coatings with Azofoska fertilizer deposited onto pea seed. Polymers 2022, 14, 4119. [Google Scholar] [CrossRef]
- Shilova, O.A.; Khamova, T.V.; Panova, G.G.; Kornyukhin, D.L.; Anikina, L.M.; Artemyeva, A.M.; Udalova, O.R.; Galushko, A.S.; Baranchikov, A.E. Synthesis and research of functional layers based on titanium dioxide nanoparticles and silica sols formed on the surface of seeds of Chinese Cabbage. Russ. J. Appl. Chem. 2020, 93, 25–34. [Google Scholar] [CrossRef]
- Shilova, O.; Dolmatov, V.; Panova, G.; Khamova, T.; Baranchikov, A.; Gorshkova, Y.; Udalova, O.; Zhuravleva, A.; Kopitsa, G. Nanodiamond batch enriched with boron: Properties and prospects for use in agriculture. Biointerface Res. Appl. Chem. 2022, 12, 6134–6147. [Google Scholar] [CrossRef]
- Jacob, S.R.; Kumar, M.B.A.; Varghese, E.; Sinha, S.N. Hydrophilic polymer film coat as a micro-container of individual seedfacilitates safe storage of tomato seeds. Sci. Hortic. 2016, 204, 116–122. [Google Scholar] [CrossRef]
- Purcar, V.; Răditoiu, V.; Răditoiu, A.; Manea, R.; Raduly, F.M.; Ispas, G.C.; Frone, A.N.; Nicolae, C.A.; Gabor, R.A.; Anastasescu, M.; et al. Preparation and Characterization of Some Sol-Gel Modified Silica Coatings Deposited on Polyvinyl Chloride (PVC) Substrates. Coatings 2021, 11, 11. [Google Scholar] [CrossRef]
- Ribicki, A.C.; Chemin, B.G.; Van Haandel, V.J.; Winiarski, J.P.; de Castro Rozada, T.; Pessoa, C.A.; Estrada, R.A.; Fiorin, B.C.; Fujiwara, S.T. Sol gel synthesis of 3-n-propyl(4-aminomethyl)pyridinium silsesquioxane chloride and the enhanced electrocatalytic activity of LbL films. J. Sol-Gel Sci. Technol. 2018, 87, 216–229. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Joshi, A.; Tian, D.-D.; Rajput, V.D.; Singh, M.; Arora, J.; Minkina, T.; Li, Y.-R. Recent Trends in NanoFertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12, 173. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Amanzadeh, T.; Dashti, S. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov. 2016, 107, 265–276. [Google Scholar] [CrossRef]
- Kovalenko, A.S.; Nikolaev, A.M.; Khamova, T.V.; Udalova, O.R.; Zhuravleva, A.S.; Kopitsa, G.P.; Sinel’nikov, A.A.; Tsvigun, N.V.; Khomyakov, Y.V.; Panova, G.G.; et al. Synthesis of iron oxide magnetic nanoparticles and their effect on growth, productivity, and quality of tomato. Glass Phys. Chem. 2021, 47 (Suppl. 1), S67–S74. [Google Scholar] [CrossRef]
- Wang Yu Wang, S.; Xu, M.; Xiao, L.; Dai, Z.; Li, J. The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ. Pollut. 2019, 249, 1011–1018. [Google Scholar] [CrossRef]
- Kovalenko, A.S.; Shilova, O.A.; Nikolaev, A.M.; Myakin, S.V. Comparative characterization of aqueous suspensions of magnetic iron oxide nanoparticles with different phase compositions. Colloid. J. 2023, 85, 389–397. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Raman, A. The application of infrared spectroscopy to the study of rust systems—II. Study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3). Corros. Sci. 1993, 34, 1355–1365. [Google Scholar] [CrossRef]
- Pecharroman, C.; Gonzalez-Carreno, T.; Iglesias, J.E. The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys. Chem. Miner. 1995, 22, 21–29. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W. Magnetite. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2018. [Google Scholar]
- Mogilevsky, L.Y.; Dembo, A.T.; Svergun, D.I.; Feigin, L.A. Automatic small-angle X-ray diffractometer with a linear position-sensitive detector. Crystallography 1984, 29, 587–591. [Google Scholar]
- GOST R 8.698-2010; State System for Ensuring the Uniformity of Measurements. Dimensional Parameters of Nanoparticles and Thin Films. Method for Measurement by Means of a Small Angle X-ray Scattering Diffractometer. Federal Agency for Technical Regulation and Metrology: Moscow, Russia, 2010.
- GOST 11230-95; Seeds of Vetch. Varietal and Sowing Characteristics. Specifications. Committee of the Russian Federation for Standardization, Metrology and Certification: Moscow, Russia, 1995.
- International Seed Testing Association. International Rules for Seed Testing; ISTA: Basserdorf, Switzerland, 2008. [Google Scholar]
- VIR Guidelines. In Study and Maintenance of a Collection of Vegetable Plants (Carrots, Celery, Parsley, Parsnips, Radishes, Radishes); Sazonova, L.V.; Levandovskaya, L.I.; Krivchenko, V.I.; Vlasova, E.A.; Ermakov, A.I.; Voskresenskaya, V.V. (Eds.) VIR: Leningrad, Russia, 1981; 190p. (In Russian) [Google Scholar]
- Golikova, E.V.; Burdina, N.M.; Vysokovskaya, N.A. Aggregation stability of SiO2, FeOOH, ZrO2, CeO2, and natural diamond sols and their binary mixtures: 2. The photometric study of heterocoagulation of SiO2–FeOOH, SiO2–ZrO2, SiO2–CeO2, and CeO2–natural diamond binary systems in KCl solutions. Colloid J. 2002, 64, 142–148. [Google Scholar] [CrossRef]
- Yates, P.D.; Franks, G.V.; Biggs, S.; Jameson, G.J. Heteroaggregation with nanoparticles: Effect of particle size ratio on optimum particle dose. Colloids Surf. A Physicochem. Eng. Aspects 2005, 255, 85–90. [Google Scholar] [CrossRef]
- Khamova, T.V.; Shilova, O.A.; Golikova, E.V. Investigation of the structuring in the Sol-Gel systems based on tetraethoxysilane. Glass Phys. Chem. 2006, 32, 448–459. [Google Scholar] [CrossRef]
- Martakov, I.S.; Torlopov, M.A.; Mikhaylov, V.I.; Krivoshapkina, E.F.; Silant’ev, V.E.; Krivoshapkin, P.V. Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. J. Sol-Gel Sci. Technol. 2018, 88, 13–21. [Google Scholar] [CrossRef]
Name | Composition a | Unit-Cell Parameter b a, Å | Number of Cationic Vacancies per Unit Cell c | Fe2+/Fe3+ Ratio | CSR, nm d |
---|---|---|---|---|---|
Maghemite [32,33] | γ-Fe2O3 | 8.336–8.339 | 0.33 | 0/100 | – |
No. 1 | Fe2.7O4 | 8.341(4) | 0.30 | 3/100 | ~14 |
No. 2 | Fe2.78O4 | 8.355(4) | 0.22 | 13/100 | ~20 |
No. 3 | Fe2.86O4 | 8.367(3) | 0.16 | 22/100 | ~14 |
Magnetite [33,34] | Fe3O4 | 8.396–8.397 | 0 | 50/100 | – |
Composition | NPs * FexOy | Germination Energy % | Germination % | Shoot Length cm | Root Length cm |
---|---|---|---|---|---|
Water ** for series from: | – | ||||
No. 1 | 92 | 90 | 2.6 ± 0.3 | 6.1 ± 0.6 | |
No. 2 | 87 | 90 | 2.4 ± 0.2 | 5.8 ± 0.5 | |
No. 3 | 93 | 82 | 2.4 ± 0.2 | 5.4 ± 0.4 | |
Silica sol * for series from nos.: | – | ||||
1 | 89 | 86 | 2.6 ± 0.2 | 5.0 ± 0.5 | |
2 | 83 | 78 | 2.6 ± 0.2 | 5.5 ± 0.5 | |
3 | 86 | 78 | 2.6 ± 0.2 | 4.8 ± 0.4 | |
Silica sol + 0.0001 mg/L FexOy | 1 | 94 | 90 | 2.9 ± 0.1 | 5.2 ± 0.4 |
2 | 86 | 87 | 2.3 ± 0.2 | 4.5 ± 0.5 | |
3 | 89 | 89 | 2.7 ± 0.2 | 5.3 ± 0.4 | |
Silica sol + 0.001 mg/L FexOy | 1 | 90 | 81 | 2.6 ± 0.2 | 5.8 ± 0.4 |
2 | 85 | 84 | 2.5 ± 0.2 | 4.5 ± 0.4 | |
3 | 95 | 90 | 2.7 ± 0.2 | 5.4 ± 0.4 | |
Silica sol + 0.01 mg/L FexOy | 1 | 96 | 95 | 2.9 ± 0.2 | 5.3 ± 0.4 |
2 | 85 | 88 | 2.5 ± 0.2 | 4.5 ± 0.5 | |
3 | 92 | 85 | 2.8 ± 0.2 | 5.4 ± 0.4 | |
Silica sol + 0.1 mg/L FexOy | 1 | 90 | 85 | 2.9 ± 0.2 | 5.4 ± 0.4 |
2 | 90 | 90 | 2.5 ± 0.2 | 4.9 ± 0.5 | |
3 | 88 | 90 | 2.4 ± 0.2 | 5.1 ± 0.4 | |
Silica sol + 1 mg/L FexOy | 1 | 88 | 89 | 2.5 ± 0.2 | 4.9 ± 0.4 |
2 | 90 | 89 | 2.5 ± 0.2 | 5.1 ± 0.5 | |
3 | 89 | 86 | 2.5 ± 0.2 | 5.3 ± 0.5 | |
Silica sol + 10 mg/L FexOy | 1 | 92 | 89 | 2.6 ± 0.2 | 5.4 ± 0.5 |
2 | 92 | 89 | 2.4 ± 0.1 | 4.5 ± 0.4 | |
3 | 88 | 86 | 2.5 ± 0.2 | 5.0 ± 0.4 | |
Silica sol + 100 mg/L FexOy | 1 | 88 | 85 | 2.7 ± 0.2 | 4.5 ± 0.5 |
2 | 81 | 82 | 2.6 ± 0.2 | 4.9 ± 0.4 | |
3 | 89 | 87 | 2.7 ± 0.2 | 4.9 ± 0.4 |
Composition | NPs * FexOy | Germination Energy % | Germination % | Shoot Length cm | Root Length cm |
---|---|---|---|---|---|
Water ** for series no.: | – | ||||
1 | 88 | 88 | 2.7 ± 0.2 | 4.5 ± 0.6 | |
2 | 69 | 83 | 2.5 ± 0.2 | 3.8 ± 0.4 | |
3 | 84 | 85 | 8.6 ± 0.8 | 11.2 ± 1.3 | |
Silica sol ** for series no.: | – | ||||
1 | 94 | 97 | 2.6 ± 0.1 | 4.1 ± 0.3 | |
2 | 87 | 95 | 2.5 ± 0.1 | 3.5 ± 0.4 | |
3 | 85 | 94 | 7.1 ± 0.8 | 8.6 ± 1.3 | |
Silica sol + 0.0001 mg/L FexOy | 1 | 93 | 90 | 2.5 ± 0.1 | 3.5 ± 0.3 |
2 | 81 | 95 | 2.5 ± 0.1 | 3.6 ± 0.3 | |
3 | 93 | 96 | 7.9 ± 1.0 | 10.0 ± 1.0 | |
Silica sol + 0.001 mg/L FexOy | 1 | 89 | 91 | 2.6 ± 0.1 | 4.9 ± 0.3 |
2 | 96 | 97 | 2.4 ± 0.1 | 3.6 ± 0.3 | |
3 | 88 | 98 | 8.2 ± 0.8 | 10.0 ± 0.9 | |
Silica sol + 0.01 mg/L FexOy | 1 | 93 | 94 | 2.4 ± 0.1 | 3.5 ± 0.3 |
2 | 84 | 92 | 2.4 ± 0.1 | 3.7 ± 0.4 | |
3 | 88 | 93 | 7.6 ± 0.7 | 10.2 ± 1.0 | |
Silica sol + 0.1 mg/L FexOy | 1 | 90 | 85 | 2.7 ± 0.1 | 10.5 ± 1.1 |
2 | 95 | 90 | 2.3 ± 0.1 | 3.0 ± 0.2 | |
3 | 97 | 90 | 8.0 ± 0.9 | 5.1 ± 0.4 | |
Silica sol + 1 mg/L FexOy | 1 | 96 | 93 | 2.5 ± 0.1 | 4.6 ± 0.3 |
2 | 85 | 92 | 2.3 ± 0.1 | 3.9 ± 0.4 | |
3 | 89 | 97 | 7.5 ± 0.6 | 10.5 ± 1.1 | |
Silica sol + 10 mg/L FexOy | 1 | 86 | 94 | 2.6 ± 0.1 | 3.9 ± 0.3 |
2 | 84 | 93 | 2.3 ± 0.1 | 4.0 ± 0.4 | |
3 | 95 | 97 | 7.4 ± 0.8 | 10.3 ± 1.0 | |
Silica sol + 100 mg/L FexOy | 1 | 98 | 94 | 2.5 ± 0.1 | 3.9 ± 0.3 |
2 | 87 | 95 | 2.4 ± 0.1 | 3.4 ± 0.3 | |
3 | 86 | 93 | 8.0 ± 1.0 | 10.6 ± 1.0 |
Composition | Percentage of Surviving Plants, % | Damage Average Weighted Score, in Points |
---|---|---|
Sterile soil | 100.0 | 1 |
H2O | 38.9 * | 8 * |
Silica sol | 28.6 * | 5.5 * |
Silica sol + 0.1 mg/L γ-Fe2O3 NPs (No. 1) | 56.0 * | 7 * |
Silica sol + 10 mg/L γ-Fe2O3 NPs (No. 1) | 11.4 * | 7 * |
Silica sol + 0.1 mg/L γ-Fe2O3-Fe3O4 NPs (No. 2) | 34.3 * | 1 |
Silica sol + 10 mg/L γ-Fe2O3-Fe3O4 NPs (No. 2) | 45.7 * | 2 |
Silica sol + 10 mg/l Fe3O4-γ-Fe2O3 NPs (No. 3) | 11.4 * | 5 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shilova, O.A.; Khamova, T.V.; Panova, G.G.; Udalova, O.R.; Artemyeva, A.M.; Kornyukhin, D.L.; Nikolaev, A.M.; Kovalenko, A.S.; Sinel’nikov, A.A.; Kopitsa, G.P. Sol-Gel-Derived Functional Coatings for Pre-Sowing Seed Treatment. Coatings 2023, 13, 1978. https://doi.org/10.3390/coatings13121978
Shilova OA, Khamova TV, Panova GG, Udalova OR, Artemyeva AM, Kornyukhin DL, Nikolaev AM, Kovalenko AS, Sinel’nikov AA, Kopitsa GP. Sol-Gel-Derived Functional Coatings for Pre-Sowing Seed Treatment. Coatings. 2023; 13(12):1978. https://doi.org/10.3390/coatings13121978
Chicago/Turabian StyleShilova, Olga A., Tamara V. Khamova, Gayane G. Panova, Olga R. Udalova, Anna M. Artemyeva, Dmitry L. Kornyukhin, Anton M. Nikolaev, Anastasiya S. Kovalenko, Alexandr A. Sinel’nikov, and Gennady P. Kopitsa. 2023. "Sol-Gel-Derived Functional Coatings for Pre-Sowing Seed Treatment" Coatings 13, no. 12: 1978. https://doi.org/10.3390/coatings13121978
APA StyleShilova, O. A., Khamova, T. V., Panova, G. G., Udalova, O. R., Artemyeva, A. M., Kornyukhin, D. L., Nikolaev, A. M., Kovalenko, A. S., Sinel’nikov, A. A., & Kopitsa, G. P. (2023). Sol-Gel-Derived Functional Coatings for Pre-Sowing Seed Treatment. Coatings, 13(12), 1978. https://doi.org/10.3390/coatings13121978