Thermal Transport Properties of Na2X (X = O and S) Monolayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanahashi, K.; Pu, J.; Takenobu, T. 2d materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 2020, 10, 1902842. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2d material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, M.; Wu, W.; Tang, Y. Fabrication of diamond microstructures by using dry and wet etching methods. Plasma Sci. Technol. 2013, 15, 552–554. [Google Scholar] [CrossRef]
- Pardo, D.A.; Jabbour, G.E.; Peyghambarian, N. Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 2000, 12, 1249–1252. [Google Scholar]
- Choi, D.-G.; Jeong, J.-h.; Sim, Y.-s.; Lee, E.-s.; Kim, W.-S.; Bae, B.-S. Fluorinated organic−inorganic hybrid mold as a new stamp for nanoimprint and soft lithography. Langmuir 2005, 21, 9390–9392. [Google Scholar] [CrossRef]
- Wang, R.; Ren, X.-G.; Yan, Z.; Jiang, L.-J.; Sha, W.E.I.; Shan, G.-C. Graphene based functional devices: A short review. Front. Phys. 2018, 14, 13603. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhao, W.S.; Hu, J.; Yin, W.Y. Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans. Nanotechnol. 2015, 14, 62–69. [Google Scholar] [CrossRef]
- Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P.S.; Hinsche, N.F.; Gjerding, M.N.; Torelli, D.; Larsen, P.M.; Riis-Jensen, A.C.; et al. The computational 2d materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002. [Google Scholar]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar]
- Sun, L.; Huang, H.; Peng, X. Laminar mos2 membranes for molecule separation. Chem. Commun. 2013, 49, 10718–10720. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Yang, D.; Tong, Z.; Nan, Y.; Wang, Y.; Zou, X.; Jiang, Z. Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci. Nano 2017, 4, 1455–1469. [Google Scholar] [CrossRef]
- Abdikheibari, S.; Lei, W.; Dumée, L.F.; Milne, N.; Baskaran, K. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. J. Mater. Chem. A 2018, 6, 12066–12081. [Google Scholar] [CrossRef]
- Karahan, H.E.; Goh, K.; Zhang, C.; Yang, E.; Yıldırım, C.; Chuah, C.Y.; Ahunbay, M.G.; Lee, J.; Tantekin-Ersolmaz, Ş.B.; Chen, Y.; et al. Mxene materials for designing advanced separation membranes. Adv. Mater. 2020, 32, 1906697. [Google Scholar] [CrossRef]
- Das Sarma, S.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Si, J.; Yu, J.; Shen, Y.; Zeng, M.; Fu, L. Elemental 2d materials: Progress and perspectives toward unconventional structures. Small Struct. 2021, 2, 2000101. [Google Scholar] [CrossRef]
- Geng, D.; Yang, H.Y. Recent advances in growth of novel 2d materials: Beyond graphene and transition metal dichalcogenides. Adv. Mater. 2018, 30, 1800865. [Google Scholar] [CrossRef]
- Hua, C.; Sheng, F.; Hu, Q.; Xu, Z.-A.; Lu, Y.; Zheng, Y. Dialkali-metal monochalcogenide semiconductors with high mobility and tunable magnetism. J. Phys. Chem. Lett. 2018, 9, 6695–6701. [Google Scholar] [CrossRef]
- Hua, C.; Li, S.; Xu, Z.-A.; Zheng, Y.; Yang, S.A.; Lu, Y. Tunable topological energy bands in 2d dialkali-metal monoxides. Adv. Sci. 2020, 7, 1901939. [Google Scholar] [CrossRef]
- Rawat, A.; Arora, A.; De Sarkar, A. Interfacing 2d M2X (M = Na, K, Cs; X = O, S, Se, Te) monolayers for 2d excitonic and tandem solar cells. Appl. Surf. Sci. 2021, 563, 150304. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Prandini, G.; Marrazzo, A.; Castelli, I.E.; Mounet, N.; Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. Npj Comput. Mater. 2018, 4, 72. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. Shengbte: A solver of the boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Han, Z.; Yang, X.; Li, W.; Feng, T.; Ruan, X. Fourphonon: An extension module to shengbte for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 2022, 270, 108179. [Google Scholar] [CrossRef]
- Broido, D.A.; Ward, A.; Mingo, N. Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys. Rev. B 2005, 72, 014308. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. Elf: The electron localization function. Angew. Chem. Int. Ed. Engl. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Zeier, W.G.; Zevalkink, A.; Gibbs, Z.M.; Hautier, G.; Kanatzidis, M.G.; Snyder, G.J. Thinking like a chemist: Intuition in thermoelectric materials. Angew. Chem. Int. Ed. 2016, 55, 6826–6841. [Google Scholar] [CrossRef] [PubMed]
- Gandi, A.N.; Schwingenschlögl, U. Thermal conductivity of bulk and monolayer mos2. Europhys. Lett. 2016, 113, 36002. [Google Scholar] [CrossRef]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford University Press: Oxford, UK, 2001; p. 288. [Google Scholar]
- Lindsay, L.; Broido, D.A. Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 2008, 20, 165209. [Google Scholar] [CrossRef]
- Sevik, C. Assessment on lattice thermal properties of two-dimensional honeycomb structures: Graphene, h-bn, h-mos2, and h-mose2. Phys. Rev. B 2014, 89, 035422. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Cao, W.; Li, H. Thermal Transport Properties of Na2X (X = O and S) Monolayers. Coatings 2022, 12, 1294. https://doi.org/10.3390/coatings12091294
Yan X, Cao W, Li H. Thermal Transport Properties of Na2X (X = O and S) Monolayers. Coatings. 2022; 12(9):1294. https://doi.org/10.3390/coatings12091294
Chicago/Turabian StyleYan, Xinxin, Wei Cao, and Haohuan Li. 2022. "Thermal Transport Properties of Na2X (X = O and S) Monolayers" Coatings 12, no. 9: 1294. https://doi.org/10.3390/coatings12091294
APA StyleYan, X., Cao, W., & Li, H. (2022). Thermal Transport Properties of Na2X (X = O and S) Monolayers. Coatings, 12(9), 1294. https://doi.org/10.3390/coatings12091294