Adhesion Strength of Amorphous Carbon Films Deposited on a Trench Sidewall
Abstract
:1. Introduction
2. Materials and Methods
2.1. a-C:H Film Deposition System
2.2. Simulation Methodology
2.3. Measurement and Analysis
3. Results and Discussions
3.1. Deposition of a-C:H Films
3.2. Simulation of Carbon Ion Implantation by SRIM
3.3. Evaluation of Carbon Ion Implantation by XPS
3.4. Adhesion Strength of the a-C:H Films
4. Discussion
4.1. The Effect of Carbon Ion Implantation
4.2. The Effect of the Interlayer
5. Conclusions
- The adhesion strength of the a-C:H films deposited on the stainless steel substrates was higher than that on the Si substrates. The reason for this is thought to be that the compressive stress in the films deposited on the stainless steel substrates is smaller because the film thickness of the stainless steel substrates is smaller due to the difference in deposition rate.
- As the pretreatments, carbon ion implantation and preparation of a-SiCx:H interlayer were effective in improving the adhesion of a-C:H films on the trench sidewalls.
- For the Si substrates, the carbon ion implantation was more effective in improving the adhesion strength of the a-C:H films than the a-SiCx:H interlayer. The carbon gradient layer on the near-surface of the Si substrate by the carbon ion implantation was successfully formed.
- For the stainless steel substrates, the a-SiCx:H interlayer was more effective in improving the adhesion strength of the a-C:H films than the carbon ion implantation. From the SRIM calculations, it is considered that the implantation effect on stainless steel substrates was smaller than that on Si substrates because of the difficulty in implanting carbon ions onto stainless steel substrates, resulting in the deposition of a carbon film on the surface of the stainless steel substrates.
- In the trench sidewall, there was no synergistic effect to improve the adhesion strength by combining the carbon ion implantation and the a-SiCx:H interlayer on both the Si and stainless steel substrates, indicating that the more effective pretreatment on each substrate dominates the adhesion strength of a-C:H films.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yang, J.; Hao, J.; Zheng, J.; Gong, Q.; Liu, W. Microstructure, mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages. Surf. Coat. Technol. 2012, 206, 4119–4125. [Google Scholar] [CrossRef]
- Grill, A. Review of the tribology of diamond-like carbon. Wear 1993, 168, 143–153. [Google Scholar] [CrossRef]
- Choi, J.; Nakao, S.; Kim, J.; Ikeyama, M.; Kato, T. Corrosion protection of DLC coatings on magnesium alloy. Diam. Relat. Mater. 2007, 16, 1361–1364. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, C.; Luo, J. Effect of substrate morphology on the roughness evolution of ultra thin DLC films. Appl. Surf. Sci. 2008, 254, 6742–6748. [Google Scholar] [CrossRef]
- Saha, B.; Toh, W.Q.; Liu, E.; Tor, S.B.; Hardt, D.E.; Lee, J. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. J. Micromech. Microeng. 2015, 26, 013002. [Google Scholar] [CrossRef] [Green Version]
- Bewilogua, K.; Hofmann, D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014, 242, 214–255. [Google Scholar] [CrossRef]
- Hauert, R.; Thorwarth, K.; Thorwarth, G. An overview on diamond-like carbon coatings in medical applications. Surf. Coat. Technol. 2013, 233, 119–130. [Google Scholar] [CrossRef]
- Hirata, Y.; Nakahara, Y.; Nagato, K.; Choi, J. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D. J. Phys. D Appl. Phys. 2016, 49, 245303. [Google Scholar] [CrossRef]
- Miyagawa, S.; Nakao, S.; Ikeyama, M.; Miyagawa, Y. Deposition of diamond-like carbon films using plasma based ion implantation with bipolar pulses. Surf. Coat. Technol. 2002, 156, 322–327. [Google Scholar] [CrossRef]
- Hirata, Y.; Kitamura, K.; Ishikawa, T.; Choi, J. Effect of precursor gas on the structure and mechanical properties of hydrogenated amorphous carbon films deposited on a trench sidewall. J. Phys. D Appl. Phys. 2019, 125, 065306. [Google Scholar] [CrossRef]
- Ensinger, W. Correlations between process parameters and film properties of diamond-like carbon films formed by hydrocarbon plasma immersion ion implantation. Surf. Coat. Technol. 2009, 203, 2721–2726. [Google Scholar] [CrossRef]
- Hirata, Y.; Choi, J. Structure and mechanical properties of a-C:H films deposited on a 3D target: Comparative study on target scale and aspect ratio. J. Phys. D Appl. Phys. 2017, 50, 155204. [Google Scholar] [CrossRef]
- Hirata, Y.; Kato, T.; Choi, J. DLC coating on a trench-shaped target by bipolar PBII. Int. J. Refract. Met. Hard Mater. 2015, 49, 392–399. [Google Scholar] [CrossRef]
- Yatsuzuka, M.; Oka, Y.; Nishijima, M.; Hiraga, K. Microstructure of interface for high-adhesion DLC film on metal substrates by plasma-based ion implantation. Vacuum 2008, 83, 190–197. [Google Scholar] [CrossRef]
- Ji, L.; Li, H.X.; Zhao, F.; Chen, J.M.; Di Zhou, H. Adhesion Studies of Diamond-Like Carbon Films on 202 Stainless Steel Substrate with a Silicon Interlayer. Key Eng. Mater. 2008, 373, 151–154. [Google Scholar] [CrossRef]
- Cemin, F.; Bim, L.T.; Leidens, L.M.; Morales, M.; Baumvol, I.J.R.; Alvarez, F.; Figueroa, C.A. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer. ACS Appl. Mater. Interfaces 2015, 7, 15909–15917. [Google Scholar] [CrossRef]
- Biersack, J.P.; Haggmark, L.G. A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 1980, 174, 257–269. [Google Scholar] [CrossRef]
- Hofsäss, H.; Zhang, K.; Mutzke, A. Simulation of ion beam sputtering with SDTrimSP, TRIDYN and SRIM. Appl. Surf. Sci. 2014, 310, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Westover, A.S.; Choi, J.; Cui, K.; Ishikawa, T.; Inoue, T.; Xiang, R.; Chiashi, S.; Kato, T.; Maruyama, S.; Pint, C.L. Load dependent frictional response of vertically aligned single-walled carbon nanotube films. Scr. Mater. 2016, 125, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Nakao, S.; Kim, J.; Choi, J.; Miyagawa, S.; Miyagawa, Y.; Ikeyama, M. Micro-scratch test of DLC films on Si substrates prepared by bipolar-type plasma based ion implantation. Surf. Coat. Technol. 2007, 201, 8334–8338. [Google Scholar] [CrossRef]
- Hirata, Y.; Ishikawa, T.; Choi, J.; Sasaki, S. Analysis of microstructure and surface morphology of a-C:H films deposited on a trench target. Diam. Relat. Mater. 2018, 83, 1–7. [Google Scholar] [CrossRef]
- Cemin, F.; Bim, L.T.; Menezes, C.M.; Maia da Costa, M.E.H.; Baumvol, I.J.R.; Alvarez, F.; Figueroa, C.A. The influence of different silicon adhesion interlayers on the tribological behavior of DLC thin films deposited on steel by EC-PECVD. Surf. Coat. Technol. 2015, 283, 115–121. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Robertson, J.; Morrison, N.A.; Godet, C. Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy. J. Appl. Phys. 2004, 96, 6348. [Google Scholar] [CrossRef]
- Choi, J.; Ishii, K.; Kato, T.; Kawaguchi, M.; Lee, W. Structural and mechanical properties of DLC films prepared by bipolar PBII&D. Diam. Relat. Mater. 2011, 20, 845–848. [Google Scholar] [CrossRef]
Carbon Ion Implantation | a-SiCx:H Interlayer Film | a-C:H Film | |
---|---|---|---|
Precursor Gas | CH₄ | TMS | Toluene |
Pressure (Pa) | 0.2 | 0.4 | |
Pulse Frequency (Hz) | 1000 | 4000 | |
Pulse voltage (kV) | +1.5/−18.0 | +1.5/−2.0 | |
Pulse width (µs) | 5 | ||
Pulse delay (µs) | 20 | ||
Treatment time (h) | 1 | 4 |
Condition Name | A | B | C | D | E | F |
---|---|---|---|---|---|---|
(I) Carbon ion implantation | ○ | ○ | ○ | |||
(II) a-SiCx:H interlayer | ○ | ○ | ○ | |||
(III) a-C:H deposition | ○ | ○ | ○ | ○ |
Ion Data | Element | C |
---|---|---|
Energy (keV) | 18 | |
Angle of Incidence (Degree) | 0, 80 | |
Target data | Compound (%) | Si 100/ Fe 85, Cr 15 |
Width of the surface (nm) | 1000 | |
Other parameters | Total number of ions Plotting window depths (nm) | 5000 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toyoshima, K.; Farghali, A.; Choi, J. Adhesion Strength of Amorphous Carbon Films Deposited on a Trench Sidewall. Coatings 2022, 12, 1220. https://doi.org/10.3390/coatings12081220
Toyoshima K, Farghali A, Choi J. Adhesion Strength of Amorphous Carbon Films Deposited on a Trench Sidewall. Coatings. 2022; 12(8):1220. https://doi.org/10.3390/coatings12081220
Chicago/Turabian StyleToyoshima, Kyohei, Abdelrahman Farghali, and Junho Choi. 2022. "Adhesion Strength of Amorphous Carbon Films Deposited on a Trench Sidewall" Coatings 12, no. 8: 1220. https://doi.org/10.3390/coatings12081220
APA StyleToyoshima, K., Farghali, A., & Choi, J. (2022). Adhesion Strength of Amorphous Carbon Films Deposited on a Trench Sidewall. Coatings, 12(8), 1220. https://doi.org/10.3390/coatings12081220