Consolidation of Fragile Oracle Bones Using Nano Calcium Sulfate Hemihydrate as a Protectant
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.-H.; Ke, W.; Hwang, M.-C.; Chen, K.Y. Micro-Raman spectroscopy of Shang oracle bone inscriptions. J. Archaeol. Sci. Rep. 2021, 37, 102910. [Google Scholar] [CrossRef]
- Demattè, P. The Origins of Chinese Writing: The Neolithic Evidence. Camb. Archaeol. J. 2010, 20, 211–228. [Google Scholar] [CrossRef]
- Brunson, K.; Zhao, X.; He, N.; Dai, X.; Rodrigues, A.; Yang, D. New insights into the origins of oracle bone divination: Ancient DNA from Late Neolithic Chinese bovines. J. Archaeol. Sci. 2016, 74, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Anzhu, L. Oracle-Bone Inscriptions and Cultural Memory. Front. Art Res. 2020, 2, 63–73. [Google Scholar] [CrossRef]
- Wang, K.; Hu, D.B. Hydroxyapatite: Collagen Biomimetic Composite Material in Conservation of Tortoise Shell Relics. J. Natl. Mus. China 2013, 3, 141–152. [Google Scholar]
- Pérez, L.; Sanchis, A.; Hernández, C.M.; Galván, B.; Sala, R.; Mallol, C. Hearths and bones: An experimental study to explore temporality in archaeological contexts based on taphonomical changes in burnt bones. J. Archaeol. Sci. Rep. 2017, 11, 287–309. [Google Scholar] [CrossRef]
- Kibblewhite, M.; Tóth, G.; Hermann, T. Predicting the preservation of cultural artefacts and buried materials in soil. Sci. Total Environ. 2015, 529, 249–263. [Google Scholar] [CrossRef]
- López-Polín, L. Possible interferences of some conservation treatments with subsequent studies on fossil bones: A conservator’s overview. Quat. Int. 2011, 275, 120–127. [Google Scholar] [CrossRef]
- Han, X.; Huang, X.; Zhang, B. Morphological studies of menthol as a temporary consolidant for urgent conservation in archaeological field. J. Cult. Herit. 2016, 18, 271–278. [Google Scholar] [CrossRef]
- Natali, I.; Tempesti, P.; Carretti, E.; Potenza, M.; Sansoni, S.; Baglioni, P.; Dei, L. Aragonite Crystals Grown on Bones by Reaction of CO2 with Nanostructured Ca(OH)2 in the Presence of Collagen. Implications in Archaeology and Paleontology. Langmuir 2014, 30, 660–668. [Google Scholar] [CrossRef]
- North, A.; Balonis, M.; Kakoulli, I. Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone. Stud. Conserv. 2016, 61, 146–161. [Google Scholar] [CrossRef]
- Gong, W.; Yang, S.; Zheng, L.; Xiao, H.; Zheng, J.; Wu, B.; Zhou, Z. Consolidating effect of hydroxyapatite on the ancient ivories from Jinsha ruins site: Surface morphology and mechanical properties study. J. Cult. Heritage 2019, 35, 116–122. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Q.; Zhang, K.; Yang, F.; Yang, L.; Wang, L. In-situ growth of calcium sulfate dihydrate as a consolidating material for the archaeological bones. Mater. Lett. 2021, 282, 128713. [Google Scholar] [CrossRef]
- Milivojević, M. Excavation, reconstruction and conservation of steppe elephant from the clay pit of the building material factory “Toza Marković” at Kikinda (Serbia). Bull. Nat. Hist. Mus. 2011, 4, 51–64. [Google Scholar]
- Ahmed, H.T. Restoration of historical artifacts and made available for exhibition in museums. J. Am. Sci. 2015, 12, 183–192. [Google Scholar]
- Qin, Z.F. Restoration of a bronze grain receptacle with the pattern of Panhui (Spring and Autumn period). J. Chinaese Antiq. 2020, 5, 74–76. [Google Scholar]
- Liu, Y.; Yang, F.; Wang, L. Exploratory research about the selective cleaning of calcium sulfate sediments on archaeological potteries. New J. Chem. 2020, 44, 7412–7416. [Google Scholar] [CrossRef]
- Park, Y.B.; Mohan, K.; Al-Sanousi, A.; Almaghrabi, B.; Genco, R.J.; Swihart, M.T.; Dziak, R. Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration. Biomed. Mater. 2011, 6, 055007. [Google Scholar] [CrossRef]
- Hazra, C.; Bari, S.; Kundu, D.; Chaudhari, A.; Mishra, S.; Chatterjee, A. Ultrasound-assisted/biosurfactant-templated size-tunable synthesis of nano-calcium sulfate with controllable crystal morphology. Ultrason. Sonochem. 2014, 21, 1117–1131. [Google Scholar] [CrossRef]
- Yin, S.; Yang, L. α or β?-hemihydrates transformed from dihydrate calcium sulfate in a salt-mediated glycerol–water solution. J. Cryst. Growth 2020, 550, 125885. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, G.; Wang, H.; Wu, Z.; Guan, B. Solution-Mediated Transformation Kinetics of Calcium Sulfate Dihydrate to α-Calcium Sulfate Hemihydrate in CaCl2 Solutions at Elevated Temperature. Ind. Eng. Chem. Res. 2013, 52, 17134–17139. [Google Scholar] [CrossRef]
- Leukel, S.; Panthöfer, M.; Mondeshki, M.; Schärtl, W.; Ruiz, S.P.; Tremel, W.; Schaertl, W. Calcium Sulfate Nanoparticles with Unusual Dispersibility in Organic Solvents for Transparent Film Processing. Langmuir 2018, 34, 7096–7105. [Google Scholar] [CrossRef] [PubMed]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Silva, A.S.; Colla, L.; Fedele, L.; Tomasin, P. Effect of solvent on nanolime transport within limestone: How to improve in-depth deposition. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 171–181. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, B.; Liu, Y.; Wei, G.; Zhang, H.; Chen, W.; Xu, Z. Biomimic conservation of weathered calcareous stones by apatite. New J. Chem. 2011, 35, 887–892. [Google Scholar] [CrossRef]
- Figueiredo, M.; Fernando, A.; Martins, G.; Freitas, J.; Judas, F. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram. Int. 2010, 36, 2383–2393. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Q.; Gao, J.; Tang, Y. Hydration characteristics and mechanism analysis of β-calcium sulfate hemihydrate. Constr. Build. Mater. 2021, 296, 123714. [Google Scholar] [CrossRef]
- Saha, A.; Lee, J.; Pancera, S.M.; Bräeu, M.F.; Kempter, A.; Tripathi, A.; Bose, A. New Insights into the Transformation of Calcium Sulfate Hemihydrate to Gypsum Using Time-Resolved Cryogenic Transmission Electron Microscopy. Langmuir 2012, 28, 11182–11187. [Google Scholar] [CrossRef]
- Youness, R.A.; Taha, M.A.; Elhaes, H.; Ibrahim, M. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 2017, 190, 209–218. [Google Scholar] [CrossRef]
- Ding, X.; Wei, B.; Deng, M.; Chen, H.; Shan, Z. Effect of protein peptides with different molecular weights on the setting and hydration process of gypsum. Constr. Build. Mater. 2022, 318, 126185. [Google Scholar] [CrossRef]
- Pan, Z.; Lou, Y.; Yang, G.; Ni, X.; Chen, M.; Xu, H.; Miao, X.; Liu, J.; Hu, C.; Huang, Q. Preparation of calcium sulfate dihydrate and calcium sulfate hemihydrate with controllable crystal morphology by using ethanol additive. Ceram. Int. 2013, 39, 5495–5502. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Mohamed, W.S.; Mohamed, H.M. Evaluation of the efficacy of traditional and nano paraloid b72 for pottery consolidation. Int. J. Conserv. Sci. 2022, 13, 15–30. [Google Scholar]
- Al-Dosari, M.A.; Darwish, S.; El-Hafez, M.A.; Elmarzugi, N.; Al-Mouallimi, N.; Mansour, S. Effects of Adding Nanosilica on Performance of Ethylsilicat (TEOS) as Consolidation and Protection Materials for Highly Porous Artistic Stone. J. Mater. Sci. Eng. A 2016, 6, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Terzu, R.; Baraj, E.; Förester, C.; Kropf, H.; Xhaxhiu, K.; Come, M. Ananalytical study of marble consolidation by oxalate precipitation using density, ftir and powder-xrd measurements. J. Eng. Process. Manag. 2017, 8, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Liao, J.; Zhu, Z.; Wang, X.; Lin, X.; Huang, W. Analysis of Mechanical Properties and Mechanical Anisotropy in Canine Bone Tissues of Various Ages. BioMed Res. Int. 2019, 2019, 3503152. [Google Scholar] [CrossRef] [PubMed]
- Van Driessche, A.E.S.; Benning, L.G.; Rodriguez-Blanco, J.D.; Ossorio, M.; Bots, P.; García-Ruiz, J.M. The Role and Implications of Bassanite as a Stable Precursor Phase to Gypsum Precipitation. Science 2012, 336, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; Calero, A.I.; Valero, E.M. Colorimetric and spectral data analysis of consolidants used for preservation of medieval plasterwork. J. Cult. Heritage 2020, 42, 64–71. [Google Scholar] [CrossRef]
- Ferreira Pinto, A.P.; Rodrigues, J.D. Impacts of consolidation procedures on colour and absorption kinetics of carbonate stones. Stud. Conserv. 2014, 59, 79–90. [Google Scholar] [CrossRef]
- Concha-Lozano, N.; Lafon, D.; Sabiri, N.; Gaudon, P. Color thresholds for aesthetically compatible replacement of stones on monuments. Color Res. Appl. 2013, 38, 356–363. [Google Scholar] [CrossRef]
Time (Hour) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
Absorbance (%) | 100 | 98 | 96.5 | 95 | 94.5 | 94.2 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lu, R.; He, L.; Wang, X.; Wang, L.; Lv, X.; Zhang, K.; Yang, F. Consolidation of Fragile Oracle Bones Using Nano Calcium Sulfate Hemihydrate as a Protectant. Coatings 2022, 12, 860. https://doi.org/10.3390/coatings12060860
Liu Y, Lu R, He L, Wang X, Wang L, Lv X, Zhang K, Yang F. Consolidation of Fragile Oracle Bones Using Nano Calcium Sulfate Hemihydrate as a Protectant. Coatings. 2022; 12(6):860. https://doi.org/10.3390/coatings12060860
Chicago/Turabian StyleLiu, Yan, Ruicong Lu, Lu He, Ximan Wang, Lu Wang, Xinyan Lv, Kun Zhang, and Fuwei Yang. 2022. "Consolidation of Fragile Oracle Bones Using Nano Calcium Sulfate Hemihydrate as a Protectant" Coatings 12, no. 6: 860. https://doi.org/10.3390/coatings12060860