Diffusion Barrier Characteristics of WSiN Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chemical Compositions and Phase Structures of As-Deposited W–Si–N Films
3.2. Structural Evolution after Annealing
3.3. Diffusion Barrier Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nitta, T.; Ohmi, T.; Hoshi, T.; Sakai, S.; Sakaibara, K.; Imai, S.; Shibata, T. Evaluating the large electromigration resistance of copper interconnects employing a newly developed accelerated life-test method. J. Electrochem. Soc. 1993, 140, 1131–1137. [Google Scholar] [CrossRef]
- Shacham-Diamand, Y. Barrier layers for Cu ULSI metallization. J. Electron. Mater. 2001, 30, 336–344. [Google Scholar] [CrossRef]
- Tu, K.N. Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 2003, 94, 5451–5473. [Google Scholar] [CrossRef]
- McBrayer, J.D.; Swanson, R.M.; Sigmon, T.W. Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 1986, 133, 1242–1246. [Google Scholar] [CrossRef]
- Istratov, A.A.; Flink, C.; Hieslmair, H.; Weber, E.R. Intrinsic diffusion coefficient of interstitial copper in silicon. Phys. Rev. Lett. 1998, 81, 1243–1246. [Google Scholar] [CrossRef]
- Kuo, Y.L.; Huang, J.J.; Lin, S.T.; Lee, C.; Lee, W.H. Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target. Mater. Chem. Phys. 2003, 80, 690–695. [Google Scholar] [CrossRef]
- Dalili, N.; Liu, Q.; Ivey, D.G. Thermal and electrical stability of TaNx diffusion barriers for Cu metallization. J. Mater. Sci. 2013, 48, 489–501. [Google Scholar] [CrossRef]
- Nicolet, M.-A. Diffusion barriers in thin films. Thin Solid Films 1978, 52, 415–443. [Google Scholar] [CrossRef]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Tsai, M.H.; Wang, C.W.; Lai, C.H.; Yeh, J.W.; Gan, J.Y. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl. Phys. Lett. 2008, 92, 052109. [Google Scholar] [CrossRef]
- Ono, H.; Nakano, T.; Ohta, T. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M = Cr, Ti, Nb, Mo, Ta, W). Appl. Phys. Lett. 1994, 64, 1511–1513. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Zhao, S.; Xu, Z.; Lv, Y.; Fan, J.; Han, Y. Size-dependent alloying ability of immiscible W-Cu bimetallic nanoparticles: A theoretical and experimental study. Nanomaterials 2021, 11, 1047. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Wang, S.J.; Yang, T.H.; Yang, Z.D.; Bor, H.Y.; Wei, C.N. Effect of nitrogen flow rate on TaN diffusion barrier layer deposited between a Cu layer and a Si-based substrate. Ceram. Int. 2017, 43, 12505–12510. [Google Scholar] [CrossRef]
- Uekubo, M.; Oku, T.; Nii, K.; Murakami, M.; Takahiro, K.; Yamaguchi, S.; Nakano, T.; Ohta, T. WNx diffusion barriers between Si and Cu. Thin Solid Films 1996, 286, 170–175. [Google Scholar] [CrossRef]
- Suh, B.S.; Lee, Y.J.; Hwang, J.S.; Park, C.O. Properties of reactively sputtered WNx as Cu diffusion barrier. Thin Solid Films 1999, 348, 299–303. [Google Scholar] [CrossRef]
- Liu, Y.; Song, S.; Mao, D.; Ling, H.; Li, M. Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si. Microelectron. Eng. 2004, 75, 309–315. [Google Scholar] [CrossRef]
- Qingxiang, W.; Shuhua, L.; Xianhui, W.; Zhikang, F. Diffusion barrier performance of amorphous W–Ti–N films in Cu metallization. Vacuum 2010, 84, 1270–1274. [Google Scholar] [CrossRef]
- Chang, S.Y.; Chen, D.S. (AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900 °C. Mater. Chem. Phys. 2011, 125, 5–8. [Google Scholar] [CrossRef]
- Li, R.; Li, M.; Jiang, C.; Qiao, B.; Zhang, W.; Xu, J. Thermal stability of AlCrTaTiZrMo-nitride high entropy film as a diffusion barrier for Cu metallization. J. Alloys Compd. 2019, 773, 482–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Wang, X.; Yao, W.; Liang, X. Structure and properties of high-entropy amorphous thin films: A review. JOM 2022, 74, 794–807. [Google Scholar] [CrossRef]
- Shen, Y.G.; Mai, Y.W.; McBride, W.E.; Zhang, Q.C.; McKenzie, D.R. Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films. Thin Solid Films 2000, 372, 257–264. [Google Scholar] [CrossRef]
- Lou, B.S.; Moirangthem, I.; Lee, J.W. Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system: Effects of nitrogen flow rate. Surf. Coat. Technol. 2020, 393, 125743. [Google Scholar] [CrossRef]
- Jiang, P.C.; Chen, J.S.; Lin, Y.K. Structural and electrical characteristics of W–N thin films prepared by reactive rf sputtering. J. Vac. Sci. Technol. A 2003, 21, 616–622. [Google Scholar] [CrossRef]
- Louro, C.; Cavaleiro, A. Mechanical behaviour of amorphous W–Si–N sputtered films after thermal annealing at increasing temperatures. Surf. Coat. Technol. 2000, 123, 192–198. [Google Scholar] [CrossRef]
- Musil, J.; Daniel, R.; Soldan, J.; Zeman, P. Properties of reactively sputtered W–Si–N films. Surf. Coat. Technol. 2006, 200, 3886–3895. [Google Scholar] [CrossRef]
- Ju, H.; He, S.; Yu, L.; Asempah, I.; Xu, J. The improvement of oxidation resistance, mechanical and tribological properties of W2N films by doping silicon. Surf. Coat. Technol. 2017, 317, 158–165. [Google Scholar] [CrossRef]
- Bai, X.; Li, K.; Chen, Y.; Feng, Q.; Ge, F.; Huang, F. Large solubility of silicon in an incongruent nitride: The case of reactively magnetron co-sputtered W-Si-N coatings. Surf. Coat. Technol. 2021, 412, 127047. [Google Scholar] [CrossRef]
- Zhao, H.; Ye, F. Effect of Si-incorporation on the structure, mechanical, tribological and corrosion properties of WSiN coatings. Appl. Surf. Sci. 2015, 256, 958–966. [Google Scholar] [CrossRef]
- Hong, T.E.; Jung, J.H.; Yeo, S.; Cheon, T.; Bae, S.I.; Kim, S.H.; Yeo, S.J.; Kim, H.S.; Chung, T.M.; Park, B.K.; et al. Highly conformal amorphous W−Si−N thin films by plasma-enhanced atomic layer deposition as a diffusion barrier for Cu metallization. J. Phys. Chem. C 2015, 119, 1548–1556. [Google Scholar] [CrossRef]
- Qu, X.P.; Lu, H.; Peng, T.; Ru, G.P.; Li, B.Z. Effects of preannealing on the diffusion barrier properties for ultrathin W–Si–N thin film. Thin Solid Films 2004, 462–463, 67–71. [Google Scholar] [CrossRef]
- Fleming, J.G.; Roherty-Osmun, E.; Smith, P.M.; Custer, J.S.; Kim, Y.-D.; Kacsich, T.; Nicolet, M.-A.; Galewski, C.J. Growth and properties of W–Si–N diffusion barriers deposited by chemical vapor deposition. Thin Solid Films 1998, 320, 10–14. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wu, Y.Z.; Mu, B.; Qiao, L.; Li, W.X.; Li, J.J.; Wang, P. Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering. J. Nucl. Mater. 2017, 485, 1–7. [Google Scholar] [CrossRef]
- Takeyama, M.; Noya, A. Preparation of WNx films and their diffusion barrier properties in Cu/Si contact systems. Jpn. J. Appl. Phys. 1997, 36, 2261–2266. [Google Scholar] [CrossRef]
- Takeyama, M.B.; Sato, M.; Yasuda, M. Relationship between 〈111〉-oriented Cu film and thin Ta–W–N barrier. Jpn. J. Appl. Phys. 2020, 59, SLLD02. [Google Scholar] [CrossRef]
- Chang, L.C.; Wu, C.E.; Ou, T.Y. Mechanical properties and diffusion barrier performance of CrWN coatings fabricated through hybrid HiPIMS/RFMS. Coatings 2021, 11, 690. [Google Scholar] [CrossRef]
- Liu, Y.H.; Chang, L.C.; Liu, B.W.; Chen, Y.I. Mechanical properties and oxidation behavior of W–Si–N coatings. Surf. Coat. Technol. 2019, 375, 727–738. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. C1s peak of adventitious carbon aligns to the vacuum level: Dire consequences for material’s bonding assignment by photoelectron spectroscopy. ChemPhysChem 2017, 18, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Greczynski, G.; Hultman, L. Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 2018, 451, 89–103. [Google Scholar] [CrossRef]
- Chang, L.C.; Sung, M.C.; Chen, Y.I. Effects of bias voltage and substrate temperature on the mechanical properties and oxidation behavior of CrSiN films. Vacuum 2021, 194, 110580. [Google Scholar] [CrossRef]
- Baker, C.C.; Shah, S.I. Reactive sputter deposition of tungsten nitride thin films. J. Vac. Sci. Technol. A 2002, 20, 1699–1703. [Google Scholar] [CrossRef]
- de Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Transition Metal Alloys; North-Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: New York, NY, USA, 1995. [Google Scholar]
- Vomiero, A.; Boscolo Marchi, E.; Quaranta, A.; Della Mea, G.; Brusa, R.S.; Mariotto, G.; Felisari, L.; Frabboni, S.; Tonini, R.; Ottaviani, G.; et al. Structural properties of reactively sputtered W–Si–N thin films. J. Appl. Phys. 2007, 102, 033505. [Google Scholar] [CrossRef]
- Chang, C.L.; Chiou, T.H.; Chen, P.H.; Chen, W.C.; Ho, C.T.; Wu, W.Y. Characteristics of TiN/W2N multilayers prepared using magnetron sputter deposition with dc and pulsed dc powers. Surf. Coat. Technol. 2016, 303, 25–31. [Google Scholar] [CrossRef]
- Kim, J.B.; Nandi, D.K.; Kim, T.H.; Jang, Y.; Bae, J.S.; Hong, T.E.; Kim, S.H. Atomic layer deposition of WNx thin films using a F-free tungsten metalorganic precursor and NH3 plasma as a Cu-diffusion barrier. Thin Solid Films 2019, 685, 393–401. [Google Scholar] [CrossRef]
Sample | S0 | S50 | S100 | S150 |
---|---|---|---|---|
Average pulse power PW (W) | 200 | 200 | 200 | 200 |
W target voltage (V) | 712 | 715 | 729 | 734 |
W peak current (A) | 8.0 | 7.8 | 7.6 | 7.6 |
W power density (kW/cm2) | 0.22 | 0.22 | 0.22 | 0.22 |
RF power PSi (W) | 0 | 50 | 100 | 150 |
Thickness (nm) | 101 | 109 | 104 | 112 |
Deposition time (min) | 29.0 | 21.8 | 20.1 | 18.4 |
Deposition rate (nm/min) | 3.48 | 5.00 | 5.18 | 6.10 |
Chemical composition | W76N24 | W68Si0N32 | W63Si4N33 | W59Si9N32 |
Sample | W 4f7/2 (eV) | Si 2p (eV) | N 1s (eV) | |||
---|---|---|---|---|---|---|
W–W | W–N | Si–Si | Si–N | N–W | N–Si | |
W76N24 | 31.17 ± 0.03 | 32.19 ± 0.01 | - | - | 397.55 ± 0.01 | - |
W68Si0N32 | 30.98 ± 0.03 | 32.15 ± 0.02 | - | - | 397.20 ± 0.03 | - |
W63Si4N33 | 30.97 ± 0.02 | 32.14 ± 0.01 | 98.96 ± 0.04 | 101.06 ± 0.07 | 397.49 ± 0.09 | 396.84 ± 0.09 |
W59Si9N32 | 31.07 ± 0.01 | 32.13 ± 0.04 | 99.06 ± 0.04 | 101.03 ± 0.09 | 397.65 ± 0.05 | 396.88 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-I.; Yeh, K.-H.; Ou, T.-Y.; Chang, L.-C. Diffusion Barrier Characteristics of WSiN Films. Coatings 2022, 12, 811. https://doi.org/10.3390/coatings12060811
Chen Y-I, Yeh K-H, Ou T-Y, Chang L-C. Diffusion Barrier Characteristics of WSiN Films. Coatings. 2022; 12(6):811. https://doi.org/10.3390/coatings12060811
Chicago/Turabian StyleChen, Yung-I, Kuo-Hong Yeh, Tzu-Yu Ou, and Li-Chun Chang. 2022. "Diffusion Barrier Characteristics of WSiN Films" Coatings 12, no. 6: 811. https://doi.org/10.3390/coatings12060811
APA StyleChen, Y.-I., Yeh, K.-H., Ou, T.-Y., & Chang, L.-C. (2022). Diffusion Barrier Characteristics of WSiN Films. Coatings, 12(6), 811. https://doi.org/10.3390/coatings12060811