Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates by Low-Temperature Hydrothermal Growth Process
3.2. Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates through the High-Temperature Seed-Layer-Assisted Hydrothermal Growth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Kevin, M.; Tho, W.H.; Ho, G.W. Transferability of solution processed epitaxial Ga:ZnO films; tailored for gas sensor and transparent conducting oxide applications. J. Mater. Chem. 2012, 22, 16442–16447. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion 2021, 360, 115544. [Google Scholar] [CrossRef]
- Lee, C.-T. Fabrication Methods and Luminescent Properties of ZnO Materials for Light-Emitting Diodes. Materials 2010, 3, 2218–2259. [Google Scholar] [CrossRef] [Green Version]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Sakurai, M.; Aono, M. ZnO-based ultraviolet photodetectors. Sensors 2010, 10, 8604–8634. [Google Scholar] [CrossRef] [Green Version]
- Deka Boruah, B. Zinc oxide ultraviolet photodetectors: Rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 2019, 1, 2059–2085. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.; Kumar, S.; Misra, A. Zinc oxide heterostructures: Advances in devices from self-powered photodetectors to self-charging supercapacitors. Mater. Adv. 2021, 2, 6768–6799. [Google Scholar] [CrossRef]
- Xiang, Y.; Xie, S.; Lu, Z.; Wen, X.; Shi, J.; Washington, M.; Wang, G.-C.; Lu, T.-M. Domain boundaries in incommensurate epitaxial layers on weakly interacting substrates. J. Appl. Phys. 2021, 130, 065301. [Google Scholar] [CrossRef]
- Koma, A. Van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Film. 1992, 216, 72–76. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, B.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.; Qi, Z.; Liu, H.; Feng, Y.; et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 2017, 8, 1906. [Google Scholar] [CrossRef] [PubMed]
- Mattinen, M.; King, P.J.; Popov, G.; Hämäläinen, J.; Heikkilä, M.J.; Leskelä, M.; Ritala, M. Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions. 2D Mater. 2019, 7, 011003. [Google Scholar] [CrossRef]
- Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O.L.; Kung, Y.C.; Krasnozhon, D.; Chen, M.W.; et al. Large-Area Epitaxial Mono layer MoS2. ACS Nano 2015, 9, 4611–4620. [Google Scholar] [CrossRef] [PubMed]
- Tantardini, C.; Kvashnin, A.G.; Gatti, C.; Yakobson, B.I.; Gonze, X. Computational modeling of 2D materials under high pressure and their chemical bonding: Silicene as possible field-effect transistor. ACS Nano 2021, 15, 6861–6871. [Google Scholar] [CrossRef]
- Chu, Y.-H. Van der Waals oxide heteroepitaxy. Npj Quantum Mater. 2017, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-I.; Lin, J.-C.; Liu, H.-J.; Chu, M.-W.; Chen, H.-W.; Ma, C.-H.; Tsai, C.-Y.; Huang, H.-W.; Lin, H.-J.; Liu, H.-L.; et al. van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite. Chem. Mater. 2016, 28, 3914–3919. [Google Scholar] [CrossRef]
- Bitla, Y.; Chen, C.; Lee, H.C.; Do, T.H.; Ma, C.H.; Van Qui, L.; Huang, C.W.; Wu, W.W.; Chang, L.; Chiu, P.W.; et al. Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Appl. Mater. Interfaces 2016, 8, 32401–32407. [Google Scholar] [CrossRef]
- Liu, H.-J.; Wang, C.-K.; Su, D.; Amrillah, T.; Hsieh, Y.-H.; Wu, K.-H.; Chen, Y.-C.; Juang, J.-Y.; Eng, L.M.; Jen, S.-U.; et al. Flexible Heteroepitaxy of CoFe2O4/Muscovite Bimorph with Large Magnetostriction. ACS Appl. Mater. Interfaces 2017, 9, 7297–7304. [Google Scholar] [CrossRef]
- Jiang, J.; Bitla, Y.; Huang, C.-W.; Do, T.H.; Liu, H.-J.; Hsieh, Y.-H.; Ma, C.-H.; Jang, C.-Y.; Lai, Y.-H.; Chiu, P.-W.; et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121. [Google Scholar] [CrossRef] [Green Version]
- Amrillah, T.; Bitla, Y.; Shin, K.; Yang, T.; Hsieh, Y.-H.; Chiou, Y.-Y.; Liu, H.-J.; Do, T.H.; Su, D.; Chen, Y.-C.; et al. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. ACS Nano 2017, 11, 6122–6130. [Google Scholar] [CrossRef]
- Wu, P.-C.; Chen, P.-F.; Do, T.H.; Hsieh, Y.-H.; Ma, C.-H.; Ha, T.D.; Wu, K.-H.; Wang, Y.-J.; Li, H.-B.; Chen, Y.-C.; et al. Heteroepitaxy of Fe3O4/Muscovite: A New Perspective for Flexible Spintronics. ACS Appl. Mater. Interfaces 2016, 8, 33794–33801. [Google Scholar] [CrossRef]
- Ma, C.H.; Lin, J.C.; Liu, H.J.; Do, T.H.; Zhu, Y.M.; Ha, T.D.; Zhan, Q.; Juang, J.Y.; He, Q.; Arenholz, E.; et al. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl. Phys. Lett. 2016, 108, 5. [Google Scholar] [CrossRef] [Green Version]
- Utama, M.I.B.; Belarre, F.J.; Magen, C.; Peng, B.; Arbiol, J.; Xiong, Q.H. Incommensurate van der Waals Epitaxy of Nanowire Arrays: A Case Study with ZnO on Muscovite Mica Substrates. Nano Lett. 2012, 12, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ding, L.; Gui, P.; Liu, N.; Yue, Y.; Chen, Z.; Song, Z.; Wen, J.; Lei, H.; Zhu, Z.; et al. Pulsed Laser Deposition Assisted van der Waals Epitaxial Large Area Quasi-2D ZnO Single-Crystal Plates on Fluorophlogopite Mica. Adv. Mater. Interfaces 2019, 6, 1901156. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Y.; Utama, M.I.B.; de la Mata, M.; Zhao, Y.Y.; Zhang, Q.; Peng, B.; Magen, C.; Arbiol, J.; Xiong, Q.H. Solution phase van der Waals epitaxy of ZnO wire arrays. Nanoscale 2013, 5, 7242–7249. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Kaneko, K.; Ikenoue, T.; Kawaharamura, T.; Furuta, M. Ultrasonic-assisted mist chemical vapor deposition of II-oxide and related oxide compounds. Phys. Status Solidi C 2014, 11, 1225–1228. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Feng, S.; Xu, Z. Strain Characterization in Two-Dimensional Crystals. Materials 2021, 14, 4460. [Google Scholar] [CrossRef]
- Peters, J.J.P.; Beanland, R.; Alexe, M.; Cockburn, J.W.; Revin, D.G.; Zhang, S.Y.Y.; Sanchez, A.M. Artefacts in geometric phase analysis of compound materials. Ultramicroscopy 2015, 157, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.J.P. Strain++; Version 1.7.1. 2022. Available online: https://jjppeters.github.io/Strainpp/ (accessed on 1 March 2022).
- Utama, M.I.B.; de la Mata, M.; Magen, C.; Arbiol, J.; Xiong, Q.H. Twinning-, Polytypism-, and Polarity-Induced Morphological Modulation in Nonplanar Nanostructures with van der Waals Epitaxy. Adv. Funct. Mater. 2013, 23, 1636–1646. [Google Scholar] [CrossRef]
- Utama, M.I.B.; Peng, Z.; Chen, R.; Peng, B.; Xu, X.; Dong, Y.; Wong, L.M.; Wang, S.; Sun, H.; Xiong, Q. Vertically Aligned Cadmium Chalcogenide Nanowire Arrays on Muscovite Mica: A Demonstration of Epitaxial Growth Strategy. Nano Lett. 2011, 11, 3051–3057. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.Y.; Li, J.; Li, S.A.; Zhang, Q.Y. Epitaxial ZnO films grown on ZnO-buffered c-plane sapphire substrates by hydrothermal method. Appl. Surf. Sci. 2010, 256, 6743–6747. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Zhou, S.; Xu, J.; Ye, J.; Gu, S.; Zhang, R.; Ren, Q. Effects of sapphire substrate annealing on ZnO epitaxial films grown by MOCVD. Appl. Surf. Sci. 2006, 253, 1745–1747. [Google Scholar] [CrossRef]
- Chen, H.-G.; Wang, C.-W.; Tu, Z.-F. Hydrothermal epitaxial growth of ZnO films on sapphire substrates presenting epitaxial ZnAl2O4 buffer layers. Mater. Chem. Phys. 2014, 144, 199–205. [Google Scholar] [CrossRef]
- Chen, H.-G.; Tu, Z.-F.; Wang, C.-W.; Yu, M.-Y. Buffer Layer Assisted Epitaxial Growth of ZnO Films on Sapphire Substrates in Low Temperature Aqueous Solution. Sci. Adv. Mater. 2014, 6, 1858–1868. [Google Scholar] [CrossRef]
- Urgessa, Z.N.; Oluwafemi, O.S.; Botha, J.R. Hydrothermal synthesis of ZnO thin films and its electrical characterization. Mater. Lett. 2012, 79, 266–269. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, E.M.; Andeen, D.; Thomson, D.; Denbaars, S.P.; Lange, F.F. Growth of heteroepitaxial ZnO thin films on gan-buffered Al2O3(0001) substrates by low-temperature hydrothermal synthesis at 90 degrees C. Adv. Funct. Mater. 2007, 17, 463–471. [Google Scholar] [CrossRef]
- Kim, J.H.; Andeen, D.; Lange, F.F. Hydrothermal growth of periodic, single-crystal ZnO microrods and microtunnels. Adv. Mater. 2006, 18, 2453–2457. [Google Scholar] [CrossRef]
- Das, S.; Dutta, K.; Pramanik, A. Morphology control of ZnO with citrate: A time and concentration dependent mechanistic insight. Crystengcomm 2013, 15, 6349–6358. [Google Scholar] [CrossRef]
- Ravadgar, P.; Horng, R.H.; Ou, S.L. A visualization of threading dislocations formation and dynamics in mosaic growth of GaN-based light emitting diode epitaxial layers on (0001) sapphire. Appl. Phys. Lett. 2012, 101, 231911. [Google Scholar] [CrossRef]
- Liu, C.; Chang, S.H.; Noh, T.W.; Abouzaid, M.; Ruterana, P.; Lee, H.H.; Kim, D.W.; Chung, J.S. Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates. Appl. Phys. Lett. 2007, 90, 011906. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.Q.; Liu, Y.Z.; Yuan, H.T.; Mei, Z.X.; Du, X.L.; Jia, J.F.; Xue, Q.K.; Zhang, Z. Surface modification of MgAl2O4 (111) for growth of high-quality ZnO epitaxial films. Appl. Phys. Lett. 2007, 90, 081911. [Google Scholar] [CrossRef]
- Le, H.Q.; Goh, G.K.L.; Liew, L.L. Nanorod assisted lateral epitaxial overgrowth of ZnO films in water at 90 degrees C. Crystengcomm 2014, 16, 69–75. [Google Scholar] [CrossRef]
- Miyake, M.; Fukui, H.; Doi, T.; Hirato, T. Preparation of Low-Resistivity Ga-Doped ZnO Epitaxial Films from Aqueous Solution Using Flow Reactor. J. Electrochem. Soc. 2014, 161, D725–D729. [Google Scholar] [CrossRef] [Green Version]
- Tezel, F.M.; Karİper, İ.A. Structural and optical properties of undoped and silver, lithium and cobalt-doped ZnO thin films. Surf. Rev. Lett. 2020, 27, 1950138. [Google Scholar] [CrossRef]
Type of Seeds | Electrical Resistivity (Ω-cm) | Carrier Concentration (cm−3) | Hall Mobility (cm2V−1s−1) |
---|---|---|---|
Type A | 0.84 | 1.5 × 1018 | 2.92 |
Type B | 1.05 | 6.0 × 1017 | 11.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-G.; Shih, Y.-H.; Wang, H.-S.; Jian, S.-R.; Yang, T.-Y.; Chuang, S.-C. Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution. Coatings 2022, 12, 706. https://doi.org/10.3390/coatings12050706
Chen H-G, Shih Y-H, Wang H-S, Jian S-R, Yang T-Y, Chuang S-C. Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution. Coatings. 2022; 12(5):706. https://doi.org/10.3390/coatings12050706
Chicago/Turabian StyleChen, Hou-Guang, Yung-Hui Shih, Huei-Sen Wang, Sheng-Rui Jian, Tzu-Yi Yang, and Shu-Chien Chuang. 2022. "Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution" Coatings 12, no. 5: 706. https://doi.org/10.3390/coatings12050706
APA StyleChen, H.-G., Shih, Y.-H., Wang, H.-S., Jian, S.-R., Yang, T.-Y., & Chuang, S.-C. (2022). Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution. Coatings, 12(5), 706. https://doi.org/10.3390/coatings12050706