Room-Temperature Infrared Photodetectors with Zero-Dimensional and New Two-Dimensional Materials
Abstract
:1. Introduction
2. PbS
2.1. Physical Properties of PbS
2.1.1. A Quantitative Estimation Method for Band Gap Width
2.1.2. Properties
2.2. Fabrication Methods
2.3. Devices
3. PbSe
3.1. Properties
3.2. Fabrication Methods
3.2.1. Chemical Bath Deposition
3.2.2. Fabrication of PbSe NCs
3.3. Devices
4. HgTe
4.1. Properties
4.2. Fabrication Methods
4.3. Devices
5. One- and Two-Dimensional Materials
5.1. Properties
5.1.1. Graphene Properties
5.1.2. Black Phosphorus Properties
5.2. Fabrication Methods
5.2.1. Graphene Preparation
5.2.2. Black Phosphorus Preparation
5.3. Devices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogalski, A. Infrared Detectors; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Challenges of small-pixel infrared detectors: A review. IOP Sci. 2016, 79, 046501. [Google Scholar] [CrossRef]
- Konstantatos, G.; Sargent, E.H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400. [Google Scholar] [CrossRef]
- Wang, J.; Hu, W. Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors. Chin. Phys. B 2017, 26, 037106. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, Y.; Hao, Q. Advances of sensitive infrared detectors with HgTe colloidal quantum dots. Coatings 2020, 10, 760. [Google Scholar] [CrossRef]
- Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523. [Google Scholar] [CrossRef]
- Litvin, A.; Martynenko, I.; Purcell-Milton, F.; Baranov, A.; Fedorov, A.; Gun’Ko, Y.J. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275. [Google Scholar] [CrossRef]
- Lhuillier, E.; Scarafagio, M.; Hease, P.; Nadal, B.; Aubin, H.; Xu, X.Z.; Lequeux, N.; Patriarche, G.; Ithurria, S.; Dubertret, B. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 2016, 16, 1282–1286. [Google Scholar] [CrossRef] [Green Version]
- Pietryga, J.M.; Park, Y.-S.; Lim, J.; Fidler, A.F.; Bae, W.K.; Brovelli, S.; Klimov, V.I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622. [Google Scholar] [CrossRef]
- Wang, R.; Shang, Y.; Kanjanaboos, P.; Zhou, W.; Ning, Z.; Sargent, E.H.E. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Chen, M.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282. [Google Scholar] [CrossRef]
- Tang, X.; Chen, M.; Ackerman, M.M.; Melnychuk, C.; Guyot-Sionnest, P. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices. Adv. Mater. 2020, 32, 1906590. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Chen, D. One-dimensional nanostructures for photodetectors. Recent Pat. Nanotechnol. 2010, 4, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, J.; Hu, W.; Guo, N.; Lu, Z.; Zou, X.; Liao, L.; Shi, S.; Chen, P.; Fan, Z.; Ho, J.C. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 2014, 8, 3628–3635. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Guo, Q.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B.; Li, C.; Han, S.-J.; Wang, H. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655. [Google Scholar] [CrossRef] [Green Version]
- Mannhart, J.; Blank, D.H.; Hwang, H.; Millis, A.; Triscone, J.-M. Two-dimensional electron gases at oxide interfaces. MRS Bull. 2008, 33, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Glazov, M.; Sherman, E.Y.; Dugaev, V. Two-dimensional electron gas with spin–orbit coupling disorder. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 2157–2177. [Google Scholar] [CrossRef]
- Bristowe, N.; Ghosez, P.; Littlewood, P.B.; Artacho, E.J. The origin of two-dimensional electron gases at oxide interfaces: Insights from theory. J. Phys. Condens. Matter 2014, 26, 143201. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.C.; Harrison, J.T.; Islam, M.T. Photoconductive PbSe thin films for infrared imaging. Mater. Adv. 2021, 2, 3133–3160. [Google Scholar] [CrossRef]
- Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L.; Li, T.; Martyniuk, P.; Rogalski, A.; Hu, W. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Nano Micro Small 2019, 15, 1904396. [Google Scholar] [CrossRef]
- Liu, T.; Tong, L.; Huang, X.; Ye, L.J. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B 2019, 28, 017302. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. [Google Scholar] [CrossRef] [Green Version]
- Case, T.W. Notes on the change of resistance of certain substances in light. Phys. Rev. 1917, 9, 305. [Google Scholar] [CrossRef]
- Case, T.W. “Thalofide Cell”—A New Photo-Electric Substance. Phys. Rev. 1920, 15, 289. [Google Scholar] [CrossRef]
- Johnson, T. Lead salt detectors and arrays PbS and PbSe. In Proceedings of the Infrared Detectors, San Diego, CA, USA, 9 December 1983; pp. 60–94. [Google Scholar]
- Scholes, G.D.; Rumbles, G. Excitons in nanoscale systems. Mater. Sustain. Energy 2011, 12–25. [Google Scholar]
- Sadovnikov, S.I.; Gusev, A.I.; Rempel, A.A. Nanostructured lead sulfide: Synthesis, structure and properties. Russ. Chem. Rev. 2016, 85, 731. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; He, L.Y.; Zhang, Q.F. A cyclic voltammetric synthesis of PbS nanoparticles. Electrochem. Commun. 2005, 7, 361–364. [Google Scholar] [CrossRef]
- Ukhanov, I.I. Optical properties of semiconductors. Moscow Izdatel Nauka. 1977, 368. [Google Scholar]
- Elliott, R. Intensity of optical absorption by excitons. Phys. Rev. 1957, 108, 1384. [Google Scholar] [CrossRef]
- Sadovnikov, S.; Kozhevnikova, N.; Gusev, A. Optical properties of nanostructured lead sulfide films with a D03 cubic structure. Semiconductors 2011, 45, 1559–1570. [Google Scholar] [CrossRef]
- Peterson, J.J.; Krauss, T.D. Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 2006, 6, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Hines, M.A.; Scholes, G.D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849. [Google Scholar] [CrossRef]
- Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulovic, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872. [Google Scholar] [CrossRef]
- Tang, H.; Zhong, J.; Chen, W.; Shi, K.; Mei, G.; Zhang, Y.; Wen, Z.; Muller-Buschbaum, P.; Wu, D.; Wang, K. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl. Nano Mater. 2019, 2, 6135–6143. [Google Scholar] [CrossRef]
- Ushakova, E.V.; Cherevkov, S.A.; Litvin, A.P.; Parfenov, P.S.; Volgina, D.-O.A.; Kasatkin, I.A.; Fedorov, A.V.; Baranov, A.V. Ligand-dependent morphology and optical properties of lead sulfide quantum dot superlattices. J. Phys. Chem. C 2016, 120, 25061–25067. [Google Scholar] [CrossRef]
- Sashchiuk, A.; Lifshitz, E.; Reisfeld, R.; Saraidarov, T.; Zelner, M.; Willenz, A.J. Optical and conductivity properties of PbS nanocrystals in amorphous zirconia sol-gel films. J. Sol-Gel Sci. Technol. 2002, 24, 31–38. [Google Scholar] [CrossRef]
- Tang, J.; Brzozowski, L.; Barkhouse, D.A.R.; Wang, X.; Debnath, R.; Wolowiec, R.; Palmiano, E.; Levina, L.; Pattantyus-Abraham, A.G.; Jamakosmanovic, D. Quantum dot photovoltaics in the extreme quantum confinement regime: The surface-chemical origins of exceptional air-and light-stability. ACS Nano 2010, 4, 869–878. [Google Scholar] [CrossRef]
- Cademartiri, L.; von Freymann, G.; Arsenault, A.C.; Bertolotti, J.; Wiersma, D.S.; Kitaev, V.; Ozin, G.A. Nanocrystals as precursors for flexible functional films. Small 2005, 1, 1184–1187. [Google Scholar] [CrossRef]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 70–74. [Google Scholar]
- Onishchuk, D.; Pavlyuk, A.; Parfenov, P.; Litvin, A.; Nabiev, I. Near Infrared LED Based on PbS Nanocrystals. Opt. Spectrosc. 2018, 125, 751–755. [Google Scholar] [CrossRef]
- Ramiro, I.I.; Ozdemir, O.; Christodoulou, S.; Gupta, S.; Dalmases, M.; Torre, I.; Konstantatos, G. Mid-and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots. Nano Lett. 2020, 20, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Shang, Y.; García de Arquer, F.P.; Xu, K.; Wang, R.; Luo, S.; Xiao, X.; Zhou, X.; Huang, R.; Sargent, E.H. Solution-processed upconversion photodetectors based on quantum dots. Nat. Electron. 2020, 3, 251–258. [Google Scholar] [CrossRef]
- Balazs, D.M.; Rizkia, N.; Fang, H.-H.; Dirin, D.N.; Momand, J.; Kooi, B.J.; Kovalenko, M.V.; Loi, M.A. Interfaces. Colloidal quantum dot inks for single-step-fabricated field-effect transistors: The importance of postdeposition ligand removal. ACS Appl. Mater. Interfaces 2018, 10, 5626–5632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F.; Gatti, F.; Koppens, F.H. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Z.; Li, J.; Tai, G.A.; Lau, S.P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Zhang, Y.; Cao, X.; Song, X.; Zhang, H.; Cao, M.; Dai, H.; Yang, J.; Zhang, G.; Yao, J. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode. Appl. Phys. Lett. 2016, 109, 263101. [Google Scholar] [CrossRef]
- Hwang, D.K.; Lee, Y.T.; Lee, H.S.; Lee, Y.J.; Shokouh, S.H.; Kyhm, J.-H.; Lee, J.; Kim, H.H.; Yoo, T.-H.; Nam, S.H. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 2016, 8, e233. [Google Scholar] [CrossRef]
- Ozdemir, O.; Ramiro, I.; Gupta, S.; Konstantatos, G.J. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm. Nat. Photonics 2019, 6, 2381–2386. [Google Scholar] [CrossRef] [Green Version]
- YousefiAmin, A.; Killilea, N.A.; Sytnyk, M.; Maisch, P.; Tam, K.C.; Egelhaaf, H.-J.; Langner, S.; Stubhan, T.; Brabec, C.J.; Rejek, T.J. Fully printed infrared photodetectors from PbS nanocrystals with perovskite ligands. ACS Nano 2019, 13, 2389–2397. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Wang, Y.; Shen, Q.; Xie, X.; Zheng, H.; Ma, W.; Wen, Z.; Sun, X.J.S.C.M. High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure. Sci. China Mater. 2019, 62, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Dai, T.; Luo, W.; Liu, X.J. Evidences of sensitization mechanism for PbSe thin films photoconductor. Vacuum 2018, 149, 190–194. [Google Scholar] [CrossRef]
- Qiu, J.; Weng, B.; Yuan, Z.; Shi, Z.J. Study of sensitization process on mid-infrared uncooled PbSe photoconductive detectors leads to high detectivity. J. Appl. Phys. 2013, 113, 103102. [Google Scholar] [CrossRef] [Green Version]
- Shandalov, M.; Golan, Y.J.T. Microstructure and morphology evolution in chemical solution deposited semiconductor films: 2. PbSe on as face of GaAs (111). Eur. Phys. J. Appl. Phys. 2004, 28, 51–57. [Google Scholar] [CrossRef]
- Wise, F.W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.; Hussain, A.; Rahman, A.J. Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J. Nanotechnol. 2012, 3, 438–443. [Google Scholar] [CrossRef]
- Joshi, R.K.; Kanjilal, A.; Sehgal, H. Size dependence of optical properties in solution-grown Pb1−xFexS nanoparticle films. Nanotechnology 2003, 14, 809. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Aruna, S.; Koltypin, Y.; Gedanken, A. A novel method for the preparation of lead selenide: Pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem. Mater. 2000, 12, 143–147. [Google Scholar] [CrossRef]
- Gao, J.; Fidler, A.F.; Klimov, V.I. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 2015, 6, 8185. [Google Scholar] [CrossRef]
- Thambidurai, M.; Jang, Y.; Shapiro, A.; Yuan, G.; Xiaonan, H.; Xuechao, Y.; Wang, Q.J.; Lifshitz, E.; Demir, H.V.; Dang, C. High performance infrared photodetectors up to 2.8 µm wavelength based on lead selenide colloidal quantum dots. Opt. Mater. Express 2017, 7, 2326–2335. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.; He, J.; Liu, Z.; Xu, K.; Chen, Z.; Yang, X.; Li, D.; Xia, Y.; Zhang, J.; Chen, C. Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater. 2019, 31, 1900593. [Google Scholar] [CrossRef]
- Hodes, G. Chemical Solution Deposition of Semiconductor Films; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Jang, M.-H.; Hoglund, E.R.; Litwin, P.M.; Yoo, S.-S.; McDonnell, S.J.; Howe, J.M.; Gupta, M.C. Photoconductive mechanism of IR-sensitive iodized PbSe thin films via strong hole–phonon interaction and minority carrier diffusion. Appl. Opt. 2020, 59, 10228–10235. [Google Scholar] [CrossRef]
- Jang, M.-H.; Yoo, S.-S.; Kramer, M.T.; Dhar, N.K.; Gupta, M.C. Properties of chemical bath deposited and sensitized PbSe thin films for IR detection. Semicond. Sci. Technol. 2019, 34, 115010. [Google Scholar] [CrossRef]
- Hankare, P.; Delekar, S.; Bhuse, V.; Garadkar, K.; Sabane, S.; Gavali, L. Synthesis and characterization of chemically deposited lead selenide thin films. Mater. Chem. Phys. 2003, 82, 505–508. [Google Scholar] [CrossRef]
- Kassim, A.; Min, H.S.; Nagalingam, S.J. Preparation of Lead Selenide Thin Films by Chemical Bath Deposition Method in The Presence of Complexing Agent (Tartaric Acid). Turk. J. Sci. Technol. 2011, 6, 17–23. [Google Scholar]
- Anuar, K.; Abdul, H.; Ho, S.; Saravanan, N. Effect of deposition time on surface topography of chemical bath deposited PbSe thin films observed by atomic force microscopy. Pac. J. Sci. Technol. 2010, 11, 399–403. [Google Scholar]
- Hone, F.G.; Ampong, F.K.; Abza, T.; Nkrumah, I.; Paal, M.; Nkum, R.K.; Boakye, F. The effect of deposition time on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Mater. Lett. 2015, 155, 58–61. [Google Scholar] [CrossRef]
- Hone, F.G.; Ampong, F.K. Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Mater. Chem. Phys. 2016, 183, 320–325. [Google Scholar] [CrossRef]
- Ghobadi, N.; Hatam, E.G.J. Surface studies, structural characterization and quantity determination of PbSe nanocrystals deposited by chemical bath deposition technique. J. Cryst. Growth 2015, 418, 111–114. [Google Scholar] [CrossRef]
- Harrison, J.T.; Pantoja, E.; Jang, M.-H.; Gupta, M.C.J. Laser sintered PbSe semiconductor thin films for Mid-IR applications using nanocrystals. J. Alloy. Compd. 2020, 849, 156537. [Google Scholar] [CrossRef]
- Jadhav, S.; Khairnar, U. Study of optical properties of co-evaporated PbSe thin films. Arch. Appl. Sci. Res. 2012, 4, 169–177. [Google Scholar]
- Shyju, T.; Anandhi, S.; Sivakumar, R.; Garg, S.; Gopalakrishnan, R.J. Investigation on structural, optical, morphological and electrical properties of thermally deposited lead selenide (PbSe) nanocrystalline thin films. J. Cryst. Growth 2012, 353, 47–54. [Google Scholar] [CrossRef]
- Rumianowski, R.T.; Dygdala, R.S.; Jung, W.; Bala, W.J. Growth of PbSe thin films on Si substrates by pulsed laser deposition method. J. Cryst. Growth 2003, 252, 230–235. [Google Scholar] [CrossRef]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nann, T.J. Shape control of II–VI semiconductor nanomaterials. Small 2006, 2, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T.A.; Kagan, C.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, M.; Yan, Z.; Pan, T.; Liao, F.; Lin, Y. Flexible infrared detectors based on p–n junctions of multi-walled carbon nanotubes. Nanoscale 2016, 8, 9592–9599. [Google Scholar] [CrossRef] [Green Version]
- Nakotte, T.; Luo, H.; Pietryga, J. PbE (E = S, Se) colloidal quantum dot-layered 2D material hybrid photodetectors. Nanomaterials 2020, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Borousan, F.; Shabani, P.; Yousefi, R. Improvement of visible-near-infrared (NIR) broad spectral photocurrent application of PbSe mesostructures using tuning the morphology and optical properties. Mater. Res. Express 2019, 6, 095016. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, W.; Mo, C.; Liu, Y.; Zhang, W.; You, G.; Wang, L.; Atalla, M.R.; Zhang, Y.; Liu, J. Ultra-sensitive tandem colloidal quantum-dot photodetectors. Nanoscale 2015, 7, 16195–16199. [Google Scholar] [CrossRef]
- Sulaman, M.; Song, Y.; Yang, S.; Hao, Q.; Zhao, Y.; Li, M.; Saleem, M.I.; Chandraseakar, P.V.; Jiang, Y.; Tang, Y. High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology 2019, 30, 465203. [Google Scholar] [CrossRef]
- Che, Y.; Cao, X.; Yao, J. A PbSe nanocrystal vertical phototransistor with graphene electrode. Opt. Mater. 2019, 89, 138–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, M.; Song, X.; Wang, J.; Che, Y.; Dai, H.; Ding, X.; Zhang, G.; Yao, J.J.T. Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids. J. Phys. Chem. C 2015, 119, 21739–21743. [Google Scholar] [CrossRef]
- Luo, P.; Zhuge, F.; Wang, F.; Lian, L.; Liu, K.; Zhang, J.; Zhai, T. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 2019, 13, 9028–9037. [Google Scholar] [CrossRef] [PubMed]
- Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P.J. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133, 16422–16424. [Google Scholar] [CrossRef]
- Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493. [Google Scholar] [CrossRef]
- Keuleyan, S.E.; Guyot-Sionnest, P.; Delerue, C.; Allan, G. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 2014, 8, 8676–8682. [Google Scholar] [CrossRef]
- Allan, G.; Delerue, C. Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 2012, 86, 165437. [Google Scholar] [CrossRef]
- Delerue, C.J.; Lannoo, M. Nanostructures: Theory and Modeling; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Allan, G.; Delerue, C. Confinement effects in PbSe quantum wells and nanocrystals. Phys. Rev. B 2004, 70, 245321. [Google Scholar] [CrossRef]
- Shen, G.; Chen, M.; Guyot-Sionnest, P. Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping. J. Phys. Chem. Lett. 2017, 8, 2224–2228. [Google Scholar] [CrossRef]
- Hudson, M.H.; Chen, M.; Kamysbayev, V.; Janke, E.M.; Lan, X.; Allan, G.; Delerue, C.; Lee, B.; Guyot-Sionnest, P.; Talapin, D.V. Conduction band fine structure in colloidal HgTe quantum dots. ACS Nano 2018, 12, 9397–9404. [Google Scholar] [CrossRef]
- Chen, M.; Lan, X.; Tang, X.; Wang, Y.; Hudson, M.H.; Talapin, D.V.; Guyot-Sionnest, P. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photonics 2019, 6, 2358–2365. [Google Scholar] [CrossRef]
- Lhuillier, E.; Keuleyan, S.; Guyot-Sionnest, P. Optical properties of HgTe colloidal quantum dots. Nanotechnology 2012, 23, 175705. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, M.V.; Kaufmann, E.; Pachinger, D.; Roither, J.; Huber, M.; Stangl, J.; Hesser, G.; Schäffler, F.; Heiss, W.J. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: From telecommunications to molecular vibrations. J. Am. Chem. Soc. 2006, 128, 3516–3517. [Google Scholar] [CrossRef]
- Brennan, J.; Siegrist, T.; Carroll, P.; Stuczynski, S.; Reynders, P.; Brus, L.; Steigerwald, M. Bulk and nanostructure group II-VI compounds from molecular organometallic precursors. Chem. Mater. 1990, 2, 403–409. [Google Scholar] [CrossRef]
- Rogach, A.; Kershaw, S.V.; Burt, M.; Harrison, M.T.; Kornowski, A.; Eychmüller, A.; Weller, H. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv. Mater. 1999, 11, 552–555. [Google Scholar] [CrossRef]
- Murray, C.; Norris, D.J.; Bawendi, M.G.J. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Herron, N.; Calabrese, J.; Farneth, W.; Wang, Y. Crystal structure and optical properties of Cd32S14 (SC6H5) 36. DMF4, a cluster with a 15 Angstrom CdS core. Science 1993, 259, 1426–1428. [Google Scholar] [CrossRef]
- Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H.J.T. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673. [Google Scholar] [CrossRef]
- Rogach, A.; Katsikas, L.; Kornowski, A.; Su, D.; Eychmüller, A.; Weller, H.J. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber. Bunsenges. Phys. Chem. 1996, 100, 1772–1778. [Google Scholar] [CrossRef]
- Huang, L.; Zingaro, R.A.; Meyers, E.A.; Reibenspies, J.H. Reaction of mercury (II) dibromide with tris (n-butyl) phosphine telluride: Formation of an unusual (Hg Te) 3 ring system. Heteroat. Chem. 1996, 7, 57–65. [Google Scholar] [CrossRef]
- Green, M.; Wakefield, G.; Dobson, P.J. A simple metalorganic route to organically passivated mercury telluride nanocrystals. Heteroat. Chem. 2003, 13, 1076–1078. [Google Scholar] [CrossRef]
- Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D.S.; Von Freymann, G.; Ozin, G.A.J.T. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 2006, 110, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Tang, X.; Lai, K.W.C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photonics 2016, 3, 2396–2404. [Google Scholar] [CrossRef]
- Lhuillier, E.; Keuleyan, S.; Zolotavin, P.; Guyot-Sionnest, P.J. Mid-Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors. Adv. Mater. 2013, 25, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Keuleyan, S.; Kohler, J.; Guyot-Sionnest, P.J.T. Photoluminescence of mid-infrared HgTe colloidal quantum dots. J. Phys. Chem. C 2014, 118, 2749–2753. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Roberts, J.A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 2015, 107, 253104. [Google Scholar] [CrossRef]
- Melnychuk, C.; Guyot-Sionnest, P.J.T. Slow Auger relaxation in HgTe colloidal quantum dots. J. Phys. Chem. Lett. 2018, 9, 2208–2211. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Guyot-Sionnest, P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano 2018, 12, 7362–7370. [Google Scholar] [CrossRef]
- Shen, G.; Guyot-Sionnest, P. HgTe/CdTe and HgSe/CdX (X = S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. 2018, 31, 286–293. [Google Scholar] [CrossRef]
- Ackerman, M.M.; Chen, M.; Guyot-Sionnest, P. HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection. Appl. Phys. Lett. 2020, 116, 083502. [Google Scholar] [CrossRef]
- Chen, M.; Lan, X.; Hudson, M.; Shen, G.; Littlewood, P.; Talapin, D.; Guyot-Sionnest, P. Magnetoresistance of High Mobility HgTe Quantum Dot Films with Controlled Charging. J. Phys. Chem. C 2022. [Google Scholar] [CrossRef]
- Ackerman, M.M.; Tang, X.; Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 2018, 12, 7264–7271. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ackerman, M.M.; Shen, G.; Guyot-Sionnest, P.J. Towards infrared electronic eyes: Flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 2019, 15, 1804920. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lai, K.W.C. Graphene/HgTe quantum-dot photodetectors with gate-tunable infrared response. ACS Appl. Nano Mater. 2019, 2, 6701–6706. [Google Scholar] [CrossRef]
- Tang, X.; Chen, M.; Kamath, A.; Ackerman, M.M.; Guyot-Sionnest, P.J. Colloidal quantum-dots/graphene/silicon dual-channel detection of visible light and short-wave infrared. ACS Photonics 2020, 7, 1117–1121. [Google Scholar] [CrossRef]
- Dayeh, S.A.; Aplin, D.P.; Zhou, X.; Yu, P.K.; Yu, E.T.; Wang, D.J. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332. [Google Scholar] [CrossRef]
- Ford, A.C.; Ho, J.C.; Chueh, Y.-L.; Tseng, Y.-C.; Fan, Z.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365. [Google Scholar] [CrossRef]
- Takahashi, T.; Takei, K.; Adabi, E.; Fan, Z.; Niknejad, A.M.; Javey, A. Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano 2010, 4, 5855–5860. [Google Scholar] [CrossRef]
- Meitei, P.; Alam, M.W.; Ngangbam, C.; Singh, N.K. Enhanced UV photodetection characteristics of annealed Gd2O3 nanorods. Appl. Nanosci. 2021, 11, 1437–1445. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. 2009, 11–19. [Google Scholar]
- Partoens, B.; Peeters, F. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 2006, 74, 075404. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.; Novoselov, K.; Schedin, F.; Jiang, D.; Firsov, A.; Geim, A. Two-dimensional electron and hole gases at the surface of graphite. Phys. Rev. B 2005, 72, 201401. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Gao, W.; Gupta, B.K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L.B.; Zhan, X.; Gao, G. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849. [Google Scholar] [CrossRef]
- Hai, X.; Feng, J.; Chen, X.; Wang, J.J. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. J. Mater. Chem. B 2018, 6, 3219–3234. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C.M. One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012, 22, 8764–8766. [Google Scholar] [CrossRef]
- Chen, X.; Ponraj, J.S.; Fan, D.; Zhang, H. An overview of the optical properties and applications of black phosphorus. Nanoscale 2020, 12, 3513–3534. [Google Scholar] [CrossRef]
- Chen, H.; Huang, P.; Guo, D.; Xie, G.J.T. Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 2016, 120, 29491–29497. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.; Soklaski, R.; Liang, Y.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, C.E.N.E.R.; Sood, A.E.K.; Subrahmanyam, K.E.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. J. Ger. Chem. Soc. 2009, 48, 7752–7777. [Google Scholar]
- Sidorov, A.N.; Yazdanpanah, M.M.; Jalilian, R.; Ouseph, P.; Cohn, R.; Sumanasekera, G. Electrostatic deposition of graphene. Nanotechnology 2007, 18, 135301. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V.; Brady, M.; Smith, A.; Feenstra, R.; Greve, D.J. Preparation of atomically flat surfaces on silicon carbide using hydrogen etching. J. Electron. Mater. 1998, 27, 308–312. [Google Scholar] [CrossRef]
- Charrier, A.; Coati, A.; Argunova, T.; Thibaudau, F.; Garreau, Y.; Pinchaux, R.; Forbeaux, I.; Debever, J.-M.; Sauvage-Simkin, M.; Themlin, J.-M. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J. Appl. Phys. 2002, 92, 2479–2484. [Google Scholar] [CrossRef]
- Fogarassy, Z.; Dobrik, G.; Varga, L.K.; Biró, L.P.; Lábár, J.L. Growth of Ni layers on single crystal sapphire substrates. Thin Solid Films 2013, 539, 96–101. [Google Scholar] [CrossRef]
- Fogarassy, Z.; Rümmeli, M.H.; Gorantla, S.; Bachmatiuk, A.; Dobrik, G.; Kamarás, K.; Biró, L.P.; Havancsák, K.; Lábár, J.L. Dominantly epitaxial growth of graphene on Ni (1 1 1) substrate. Appl. Surf. Sci. 2014, 314, 490–499. [Google Scholar] [CrossRef]
- Subrahmanyam, K.; Panchakarla, L.; Govindaraj, A.; Rao, C.J.T. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 2009, 113, 4257–4259. [Google Scholar] [CrossRef]
- Seshadri, R.; Govindaraj, A.; Aiyer, H.N.; Sen, R.; Subbanna, G.; Raju, A.; Rao, C.J. Investigations of carbon nanotubes. Curr. Sci. 1994, 839–847. [Google Scholar]
- Liu, H.; Du, Y.; Deng, Y.; Peide, D.Y. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S.J. Synthesis and some properties of black phosphorus single crystals. Phys. B+C 1981, 105, 99–102. [Google Scholar] [CrossRef]
- Shirotani, I.J.M.C.; Crystals, L. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst. 1982, 86, 203–211. [Google Scholar] [CrossRef]
- Lange, S.; Schmidt, P.; Nilges, T. Au3SnP7@ black phosphorus: An easy access to black phosphorus. ChemInform 2007, 46, 4028–4035. [Google Scholar]
- Nilges, T.; Kersting, M.; Pfeifer, T.J. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707–1711. [Google Scholar] [CrossRef]
- Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T.J. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A.C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589. [Google Scholar] [CrossRef]
- Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L.J. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2012, 24, 2874–2878. [Google Scholar] [CrossRef]
- Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef]
- Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Bae, S.-H.; Hong, B.H.; Ahn, J.-H.; Lee, T.-W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110. [Google Scholar] [CrossRef]
- Wu, Y.; Zou, X.; Sun, M.; Cao, Z.; Wang, X.; Huo, S.; Zhou, J.; Yang, Y.; Yu, X.; Kong, Y.J.; et al. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl. Mater. Interfaces 2016, 8, 25645–25649. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Tongay, S.; Petterson, M.K.; Berke, K.; Rinzler, A.G.; Appleton, B.R.; Hebard, A.F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larki, F.; Abdi, Y.; Kameli, P.; Salamati, H. An effort towards full graphene photodetectors. Photonic Sens. 2022, 12, 31–67. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.J.T. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Koenig, S.P.; Doganov, R.A.; Schmidt, H.; Castro Neto, A.; Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Lin, X.; Xu, Z.; Chu, D. Recent developments in black phosphorus transistors. J. Mater. Chem. C 2015, 3, 8760–8775. [Google Scholar] [CrossRef]
- Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z. Black phosphorus nanosheets: Synthesis, characterization and applications. Small 2016, 12, 3480–3502. [Google Scholar] [CrossRef]
- Zhu, W.; Yogeesh, M.N.; Yang, S.; Aldave, S.H.; Kim, J.-S.; Sonde, S.; Tao, L.; Lu, N.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890. [Google Scholar] [CrossRef]
Device | R(A/W) | D*(Jones) | Response Time | Reference |
---|---|---|---|---|
Graphene–PbS QD phototransistors | ~108 | 7 × 103 | NA | [46] |
PbS CQD–TMDC photodetectors | 107 | 1.02 × 1012 | NA | [50] |
Tandem PbSe CQD photodetectors | ~0.5 | 8.1 × 1013 | NA | [83] |
PbSe CQD–Bi2O2Se nanosheets hybrid photodetector | >103 | NA | ∼4 ms | [87] |
HgTe CQD photodetectors | 1.3 | 3.3 × 1011 | 50 ns | [117] |
Stacked CQD photodiodes | NA | 6 × 1010 | <2.5 μs | [11] |
Three-pixel photodetectors | 0.1 | 2 × 107 | ~ 91.5 ms and ~541.3 ms | [108] |
HgTe CQD/Graphene/Silicon devices | ~0.9 | ~5 × 109 | ~13 ns and ~3 µs | [120] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Tang, X.; Chen, M. Room-Temperature Infrared Photodetectors with Zero-Dimensional and New Two-Dimensional Materials. Coatings 2022, 12, 609. https://doi.org/10.3390/coatings12050609
Li T, Tang X, Chen M. Room-Temperature Infrared Photodetectors with Zero-Dimensional and New Two-Dimensional Materials. Coatings. 2022; 12(5):609. https://doi.org/10.3390/coatings12050609
Chicago/Turabian StyleLi, Taipeng, Xin Tang, and Menglu Chen. 2022. "Room-Temperature Infrared Photodetectors with Zero-Dimensional and New Two-Dimensional Materials" Coatings 12, no. 5: 609. https://doi.org/10.3390/coatings12050609
APA StyleLi, T., Tang, X., & Chen, M. (2022). Room-Temperature Infrared Photodetectors with Zero-Dimensional and New Two-Dimensional Materials. Coatings, 12(5), 609. https://doi.org/10.3390/coatings12050609