Corrosion Resistance of Li-Al LDHs Film Modified by Methionine for 6063 Al Alloy in 3.5 wt.% NaCl Solution
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemical
2.2. Synthesis of NLDHs and MLDHs Films
2.3. Characterization
2.4. Theoretical Simulation
3. Results and Discussions
3.1. Characterization of NLDHs and MLDHs Films
3.2. Anti-Corrosion Performance
3.3. Self-Healing Performance
3.4. Anti-Corrosion Mechanism of MLDHs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younis, A.A.; El-Sabbah, M.M.B.; Holze, R. The effect of chloride concentration and pH on pitting corrosion of AA7075 aluminum alloy coated with phenyltrimethoxysilane. J. Solid State Electrochem. 2011, 16, 1033–1040. [Google Scholar] [CrossRef]
- Liang, W.J.; Rometsch, P.A.; Cao, L.F.; Birbilis, N. General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu. Corros. Sci. 2013, 76, 119–128. [Google Scholar] [CrossRef]
- Yoganandan, G.; Pradeep Premkumar, K.; Balaraju, J.N. Evaluation of corrosion resistance and self-healing behavior of zirconium–cerium conversion coating developed on AA2024 alloy. Surf. Coat. Technol. 2015, 270, 249–258. [Google Scholar] [CrossRef]
- Valdez, B.; Kiyota, S.; Stoytcheva, M.; Zlatev, R.; Bastidas, J.M. Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6. Corros. Sci. 2014, 87, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Galvao, T.L.P.; Neves, C.S.; Caetano, A.P.F.; Maia, F.; Mata, D.; Malheiro, E.; Ferreira, M.J.; Bastos, A.C.; Salak, A.N.; Gomes, J.R.B.; et al. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool. J. Colloid Interface Sci. 2016, 468, 86–94. [Google Scholar] [CrossRef]
- Anjum, M.J.; Zhao, J.; Zahedi Asl, V.; Yasin, G.; Wang, W.; Wei, S.; Zhao, Z.; Qamar Khan, W. In-situ intercalation of 8-hydroxyquinoline in Mg-Al LDH coating to improve the corrosion resistance of AZ31. Corros. Sci. 2019, 157, 1–10. [Google Scholar] [CrossRef]
- Wen, T.; Yan, R.; Wang, N.; Li, Y.; Chen, T.; Ma, H. PPA-containing layered double hydroxide (LDH) films for corrosion protection of a magnesium alloy. Surf. Coat. Technol. 2020, 383, 125255. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Liu, S.; Zhang, Y.; Qu, L. Fabrication of superhydrophobic marigold shape LDH films on stainless steel meshes via in-situ growth for enhanced anti-corrosion and high efficiency oil-water separation. Appl. Clay Sci. 2019, 182, 105292. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Fedel, M. The effect of the surface morphologies on the corrosion resistance of in situ growth MgAl-LDH based conversion film on AA6082. Surf. Coat. Technol. 2018, 352, 166–174. [Google Scholar] [CrossRef]
- Olya, N.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B. Construction of a novel corrosion protective composite film based on a core-shell LDH-Mo@SiO2 inhibitor nanocarrier with both self-healing/barrier functions. J. Taiwan Inst. Chem. Eng. 2020, 113, 406–418. [Google Scholar] [CrossRef]
- Chen, F.; Yu, P.; Zhang, Y. Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy. J. Alloys Compd. 2017, 711, 342–348. [Google Scholar] [CrossRef]
- Kaseem, M.; Ko, Y.G. A novel composite system composed of zirconia and LDHs film grown on plasma electrolysis coating: Toward a stable smart coating. Ultrason. Sonochem. 2018, 49, 316–324. [Google Scholar] [CrossRef]
- Anjum, M.J.; Zhao, J.-M.; Asl, V.Z.; Malik, M.U.; Yasin, G.; Khan, W.Q. Green corrosion inhibitors intercalated Mg:Al layered double hydroxide coatings to protect Mg alloy. Rare Met. 2020, 40, 2254–2265. [Google Scholar] [CrossRef]
- Wu, L.; Wu, J.; Zhang, Z.; Zhang, C.; Zhang, Y.; Tang, A.; Li, L.; Zhang, G.; Zheng, Z.; Atrens, A.; et al. Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-Al LDH films on anodized magnesium alloy. Appl. Surf. Sci. 2019, 487, 569–580. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, P.; Man, X.-L.; Wang, D.; Huang, J.; Shu, H.-B.; Liu, Z.-G.; Wang, L. Fe, N co-doped graphene as a multi-functional anchor material for lithium-sulfur battery. J. Phys. Chem. Solids 2019, 126, 280–286. [Google Scholar] [CrossRef]
- He, Q.-Q.; Zhou, M.-J.; Hu, J.-M. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys. Electrochim. Acta 2020, 355, 136796. [Google Scholar] [CrossRef]
- Yang, B.; Ma, Y.; Liang, Z.; Liao, Y.; Wang, Z.; Zhu, P. A superhydrophobic and corrosion resistant layered double hydroxides coating on AA2099-T83 Al-Cu-Li alloy. Surf. Coat. Technol. 2021, 405, 126629. [Google Scholar] [CrossRef]
- Mata, D.; Serdechnova, M.; Mohedano, M.; Mendis, C.L.; Lamaka, S.V.; Tedim, J.; Hack, T.; Nixon, S.; Zheludkevich, M.L. Hierarchically organized Li–Al-LDH nano-flakes: A low-temperature approach to seal porous anodic oxide on aluminum alloys. RSC Adv. 2017, 7, 35357–35367. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Luo, X.; Pan, X.; Liao, L.; Wu, X.; Liu, Y. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy. Appl. Surf. Sci. 2017, 394, 275–281. [Google Scholar] [CrossRef]
- Lin, K.; Luo, X.; Pan, X.; Zhang, C.; Liu, Y. Enhanced corrosion resistance of LiAl-layered double hydroxide (LDH) coating modified with a Schiff base salt on aluminum alloy by one step in-situ synthesis at low temperature. Appl. Surf. Sci. 2019, 463, 1085–1096. [Google Scholar] [CrossRef]
- Li, J.; Lin, K.; Luo, X.; Zhang, H.; Cheng, Y.F.; Li, X.; Liu, Y. Enhanced corrosion protection property of Li-Al layered double hydroxides (LDHs) film modified by 2-guanidinosuccinic acid with excellent self-repairing and self-antibacterial properties. Appl. Surf. Sci. 2019, 480, 384–394. [Google Scholar] [CrossRef]
- Mallakpour, S.; Abdolmaleki, A.; Borandeh, S. Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl. Surf. Sci. 2014, 307, 533–542. [Google Scholar] [CrossRef]
- Khaled, K.F. Corrosion control of copper in nitric acid solutions using some amino acids—A combined experimental and theoretical study. Corros. Sci. 2010, 52, 3225–3234. [Google Scholar] [CrossRef]
- Hou, L.; Li, Y.; Sun, J.; Zhang, S.H.; Wei, H.; Wei, Y. Enhancement corrosion resistance of Mg Al layered double hydroxides films by anion-exchange mechanism on magnesium alloys. Appl. Surf. Sci. 2019, 487, 101–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, N.; Zhang, L.; Wu, L. Inhibition of the corrosion of carbon steel in HCl solution by methionine and its derivatives. Corros. Sci. 2015, 98, 438–449. [Google Scholar] [CrossRef]
- Oguzie, E.E.; Li, Y.; Wang, F.H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. J. Colloid Interface Sci. 2007, 310, 90–98. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Moradi-Alavian, S.; Esrafili, M.D.; Kazempour, A. Hybrid sol-gel coatings based on silanes-amino acids for corrosion protection of AZ91 magnesium alloy: Electrochemical and DFT insights. Prog. Org. Coat. 2019, 131, 191–202. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Ghasemi, Z.; Seifzadeh, D. The inhibition effect of some amino acids towards the corrosion of aluminum in 1M HCl+1M H2SO4 solution. Appl. Surf. Sci. 2005, 249, 408–418. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Liu, J.; Song, D.; Zhang, T.; Liu, J.; He, F.; Zhang, M.; Wang, J. Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy. J. Alloys Compd. 2020, 824, 153918. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Li, Z.-Z.; He, Y.-L.; Tao, W.-Q. Experimental and Numerical Study on Thermal Conductivity of Proton Exchange Membrane. J. Nanosci. Nanotechnol. 2015, 15, 3087–3091. [Google Scholar] [CrossRef]
- Song, L.; Liu, W.; Xin, F.; Li, Y. “Materials Studio” Simulation Study of the Adsorption and Polymerization Mechanism of Sodium Silicate on Active Silica Surface at Different Temperatures. Int. J. Met. 2020, 15, 1091–1098. [Google Scholar] [CrossRef]
- Liu, H.; Song, L. Materials Studio simulation for the adsorption properties of CO2 molecules at the surface of sodium silicate and potassium silicate solution under different pressure conditions. Int. J. Met. 2021, 16, 242–251. [Google Scholar] [CrossRef]
- Tsai, C.-W.; Langner, E.H.G.; Harris, R.A. Computational study of ZIF-8 analogues with electron donating and withdrawing groups for CO2 adsorption. Microporous Mesoporous Mater. 2019, 288, 109613. [Google Scholar] [CrossRef]
- Abdallah, M.; Gad, E.A.M.; Altass, H.M.; El-Etre, M.A.; Al-Gorair, A.S.; Al Jahadly, B.A.; Al-Juaid, S.S. Inhibitive performance of dapoxetine drug for corrosion of aluminum alloy (AA6063) in acidic and alkaline solutions: Experimental and theoretical studies using Materials Studio v7.0. Desalin. Water Treat. 2021, 221, 270–280. [Google Scholar] [CrossRef]
- Qiao, G.-M.; Ren, Z.-J.; Zhang, J.; Hu, S.-Q.; Yan, Y.-G.; Ti, Y. Molecular dynamics simulation of corrosive medium diffusion in corrosion inhibitor membrane. Acta Phys. Chim. Sin. 2010, 26, 3041–3046. [Google Scholar] [CrossRef]
- Kornherr, A.; Hansal, S.; Hansal, W.E.G.; Besenhard, J.O.; Kronberger, H.; Nauer, G.E.; Zifferer, G. Molecular dynamics simulations of the adsorption of industrial relevant silane molecules at a zinc oxide surface. J. Chem. Phys. 2003, 119, 9719–9728. [Google Scholar] [CrossRef]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zheng, D.; Li, X.; Lin, J.; Wang, C.; Dong, S.; Lin, C. Enhanced Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films with Long-Term Stability on Al Substrate. ACS Appl. Mater. Interfaces 2018, 10, 15150–15162. [Google Scholar] [CrossRef]
- Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.; Zeng, J. Layered double hydroxide coatings on magnesium alloys: A review. J. Mater. Sci. Technol. 2018, 34, 1455–1466. [Google Scholar] [CrossRef]
- Li, J.; Yuan, T.; Zhou, C.; Chen, B.; Shuai, Y.; Wu, D.; Chen, D.; Luo, X.; Cheng, Y.F.; Liu, Y. Facile Li-Al layered double hydroxide films on Al alloy for enhanced hydrophobicity, anti-biofouling and anti-corrosion performance. J. Mater. Sci. Technol. 2021, 79, 230–242. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Ding, X.; Liu, Q.; Dai, X.; Song, J.; Jiang, B.; Atrens, A.; Pan, F. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31. J. Mater. Sci. Technol. 2021, 64, 10–20. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.; Song, M.; Liang, P.; Zhang, X.; Nguyen Huy, T.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H.; et al. A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Adv. Mater. 2018, 30, 1803181. [Google Scholar] [CrossRef]
- Méthivier, C.; Humblot, V.; Pradier, C.-M. l-Methionine adsorption on Cu(110), binding and geometry of the amino acid as a function of coverage. Surf. Sci. 2015, 632, 88–92. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, K.; Wang, Y.; Li, H.; Jiang, H.; Chen, L. N,S co-doped carbon confined MnO/MnS heterostructures derived from a one-step pyrolysis of Mn-methionine frameworks for advanced lithium storage. J. Alloys Compd. 2021, 860, 158451. [Google Scholar] [CrossRef]
- Wang, S.-L.; Lin, C.-H.; Yan, Y.-Y.; Wang, M.K. Synthesis of Li/Al LDH using aluminum and LiOH. Appl. Clay Sci. 2013, 72, 191–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, Y.; Yu, M.; Li, S.; Xue, B. A facile approach to superhydrophobic LiAl-layered double hydroxide film on Al–Li alloy substrate. J. Coat. Technol. Res. 2015, 12, 595–601. [Google Scholar] [CrossRef]
- Lai, Y.; Gao, Y.; Jin, Y.; Wen, L. Study of methionine as green corrosion inhibitor for TWIP steel in neutral chloride solution. Mater. Res. Express 2021, 8, 046533. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Zhong, X.; Jiang, L.; Lü, X.; Lai, Y.; Li, J.; Liu, Y. Effects of Chloride Ion on the Electrochemical Behavior of Pb-Ag-RE Alloy Anode. Acta Metall. Sin. 2015, 51, 378–384. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Zhou, B.; Wei, Y.; Gao, F.; Fujita, T. The effect of ZnAl-LDHs-CO3 on the corrosion behaviour of Zn-5Al alloys in 3.5wt.% NaCl solution. Corros. Sci. 2021, 179, 109165. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X. Investigation of moisture diffusion in epoxy system: Experiments and molecular dynamics simulations. Chem. Phys. Lett. 2005, 412, 322–326. [Google Scholar] [CrossRef]
Samples | Ecorr (V vs. SCE) | Ba (mV/dec) | Bc (mV/dec) | Icorr (A/cm2) |
---|---|---|---|---|
Bare Al alloy | −0.768 | 44.80 | 62.13 | 6.8 × 10−6 |
NLDHs | −0.908 | 237.06 | 35.57 | 7.1 × 10−7 |
MLDHs | −0.972 | 64.27 | 24.04 | 2.8 × 10−7 |
Time d | Ecorr (V vs. SCE) | Ba (mV/dec) | Bc (mV/dec) | Icorr (A/cm2) |
---|---|---|---|---|
0 | −0.972 | 64.27 | 24.04 | 2.8 × 10−7 |
2 | −0.827 | 31.02 | 34.28 | 3.1 × 10−7 |
7 | −0.887 | 53.51 | 23.37 | 2.8 × 10−7 |
14 | −0.949 | 45.36 | 19.81 | 4.7 × 10−7 |
21 | −0.936 | 41.74 | 18.86 | 2.6 × 10−7 |
Time/d | Rs/Ω cm2 | CPEcpf | Rcpf/Ω cm2 | CPEdl | Rct/Ω cm2 | Rtotal/Ω cm2 | Ceqcpf/F·cm−2 | ||
---|---|---|---|---|---|---|---|---|---|
(Y)/F·cm−2·sn−1 | n | (Y)/F·cm−2·sn−1 | n | ||||||
0 | 33.11 | 9.39 × 10−6 | 0.79 | 2.7 × 105 | 2.19 × 10−5 | 0.88 | 3.4 × 105 | 6.1 × 105 | 1.1 × 10−6 |
2 | 32.70 | 7.54 × 10−6 | 0.94 | 1.1 × 105 | 1.80 × 10−5 | 0.73 | 3.0 × 105 | 4.1 × 105 | 4.4 × 10−6 |
7 | 33.10 | 6.43 × 10−6 | 0.94 | 8.5 × 104 | 1.46 × 10−5 | 0.71 | 6.0 × 105 | 6.9 × 106 | 3.7 × 10−6 |
14 | 7.07 | 7.58 × 10−6 | 0.95 | 9.7 × 103 | 1.66 × 10−5 | 0.87 | 3.0 × 105 | 3.1 × 105 | 4.5 × 10−6 |
21 | 7.86 | 7.35 × 10−6 | 0.94 | 9.5 × 103 | 1.88 × 10−5 | 0.82 | 4.9 × 105 | 5.0 × 105 | 3.9 × 10−6 |
Immersing Time/d | Ecorr (V vs. SCE) | Ba (mV/dec) | Bc (mV/dec) | Icorr (A/cm2) |
---|---|---|---|---|
Without scratch for 0 d | −0.972 | 64.65 | 24.09 | 2.8 × 10−7 |
With scratch for 0 d | −1.397 | 409.92 | 15.46 | 9.2 × 10−5 |
With scratch for 2 d | −1.349 | 79.35 | 18.47 | 3.1 × 10−5 |
With scratch for 7 d | −1.196 | 95.80 | 23.99 | 5.7 × 10−6 |
With scratch for 14 d | −0.945 | 25.72 | 23.50 | 3.3 × 10−7 |
With scratch for 21 d | −1.004 | 96.30 | 22.49 | 6.7 × 10−7 |
Without scratch for 21 d | −0.936 | 41.74 | 18.86 | 2.6 × 10−7 |
Membrane | 109 D/(m2·s−1) | |
---|---|---|
H2O | Cl− | |
H2O | 2.185 | 1.02 |
Met | 0.225 | 0.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Chang, M.; He, H.; Wei, H.; Huang, Y.; Du, X.; Chen, D. Corrosion Resistance of Li-Al LDHs Film Modified by Methionine for 6063 Al Alloy in 3.5 wt.% NaCl Solution. Coatings 2022, 12, 507. https://doi.org/10.3390/coatings12040507
Ma J, Chang M, He H, Wei H, Huang Y, Du X, Chen D. Corrosion Resistance of Li-Al LDHs Film Modified by Methionine for 6063 Al Alloy in 3.5 wt.% NaCl Solution. Coatings. 2022; 12(4):507. https://doi.org/10.3390/coatings12040507
Chicago/Turabian StyleMa, Ji, Menglei Chang, Haiying He, Hongyang Wei, Yinchun Huang, Xiaoqing Du, and Dongchu Chen. 2022. "Corrosion Resistance of Li-Al LDHs Film Modified by Methionine for 6063 Al Alloy in 3.5 wt.% NaCl Solution" Coatings 12, no. 4: 507. https://doi.org/10.3390/coatings12040507
APA StyleMa, J., Chang, M., He, H., Wei, H., Huang, Y., Du, X., & Chen, D. (2022). Corrosion Resistance of Li-Al LDHs Film Modified by Methionine for 6063 Al Alloy in 3.5 wt.% NaCl Solution. Coatings, 12(4), 507. https://doi.org/10.3390/coatings12040507