Study on ε-CL-20 Coated with a Wax/F2311 Double-Layer Composite Structure
Abstract
:1. Introduction
2. Molecular Dynamics Calculation
3. Experimental Section
3.1. Materials
3.2. Sample Preparation
3.3. Characterization of the Microscopic Morphology
3.4. Contact Angle Tests
3.5. Characterization of Thermal Decomposition
3.6. Mechanical Sensitivity Tests
3.7. X-ray Diffractometry Tests
4. Results and Discussion
4.1. Interfacial Tension Analysis
4.2. Micro-Structure Analysis
4.3. Thermal Analysis
4.4. Mechanical Sensitivity
4.5. Crystal Form Analysis
5. Conclusions
- (1)
- The binding energy and cohesive energy density of F2311 and Cl-20 reached the maximum values of 124.0 kcal/mol and 0.662 kJ/cm3, respectively, indicating that F2311 could have a better coating effect with ε-Cl-20.
- (2)
- By the water suspension method, using the desensitizer wax and the high molecular polymer F2311 as the coating materials, four kinds of composite particles with the double-layer structure were prepared. The SEM and XRD tests indicated that wax and F2311 can be coated on the surface of ε-CL-20 without crystal change.
- (3)
- The interface thermodynamic parameters of ε-CL-20/F2311 were calculated: γSL = 6.0 mJ/m2, W = 50.1 mJ/m2, S = 18.5 mJ/m2. F2311 had high adhesion work (50.1 mJ·m−2) and spreading coefficients (18.5 mJ·m−2) and can be used to coat ε-CL-20.
- (4)
- The results of the DSC-TG test and the sensitivity test implied that the impact sensitivity of the sample could be reduced from 100% to 60%, the friction sensitivity could be reduced from 100% to 68%, the thermal decomposition peak temperature could be increased from 238.4 °C to 241.9 °C, and the activation energy could be increased from 217.8 kJ/mol to 257.5 kJ/mol.
- (5)
- The fluorine rubber selected by the molecular dynamics calculation was well coated on the surface of ε-Cl-20. The sensitivity of the ε-Cl-20 coated with wax/F2311 double layer structure decreased significantly. This indicates that there is a certain relationship between the choice of coating material and sensitivity, which is worth further study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, A.T.; Chafin, A.P.; Christian, S.L.; Moore, D.W.; Nadler, M.P.; Nissan, R.A.; Vanderah, D.J.; Gilardi, R.D.; George, C.F.; Flippen-Anderson, J.L. Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 1998, 54, 11793–11812. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Thakur, A.; Soni, P.K.; Kumar, M. Recrystallization of CL-20 to ε-polymorphic form. Ser. Mater. Sci. Eng. 2021, 1033, 012056. [Google Scholar] [CrossRef]
- Liang, W.H.; Wang, J.N.; Liu, H.N.; Meng, Z.H.; Qiu, L.l.; Wang, S.S. Thermally induced polymorphic transformation of Hexanitrohexaazaisowurtzitane (CL-20). Powder Technol. 2022, 395, 732–742. [Google Scholar] [CrossRef]
- Mao, X.X.; Li, Y.C.; Li, Y.F.; Jiang, L.F.; Wang, X.M. Thermal properties of decomposition and explosion for CL-20 and CL-20/n-Al. J. Energ. Mater. 2020, 38, 98–110. [Google Scholar] [CrossRef]
- Chosh, M.; Venkatesan, V.; Sikder, N.; Sikder, A.K. Quantitative analysis of α-CL-20 polymorphic impurity in ε-CL-20 using dispersive raman spectroscopy. Cent. Eur. J. Energ. Mater. 2013, 10, 419–438. [Google Scholar]
- Simpson, R.L.; Urtiew, P.A.; Ornellas, D.L.; Moody, G.L.; Scribner, K.J.; Hoffman, D.M. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos. Pyrotech. 1997, 22, 249–255. [Google Scholar] [CrossRef]
- Jiang, X.B.; Guo, X.Y.; Ren, H.; Jiao, Q. Preparation and characterization of desensitized ε-HNIW in solvent-antisolvent recrystallizations. Cent. Eur. J. Energ. Mater. 2012, 9, 139–146. [Google Scholar]
- Sivabalan, R.; Gore, G.; Nair, U.; Saikia, A.; Venugopalan, S.; Gandhe, B. Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity. J. Hazard. Mater. 2007, 139, 199–203. [Google Scholar] [CrossRef]
- Blagden, N.; Song, M.; Davey, R.J.; Seton, L.; Seaton, C.C. Ordered aggregation of benzamide crystals induced using a “motif capper” additive. Cryst. Growth Des. 2005, 5, 467–471. [Google Scholar] [CrossRef]
- Hurley, L.A.; Jones, A.G.; Hammond, R.B. Molecular packing, Morphological modeling, and image analysis of cyanazine crystals precipitated from aqueous ethanol solutions. Cryst. Growth Des. 2004, 4, 711–715. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Jin, S.; Chen, S.; Jiao, Q. Effects of additives on ε-HNIW crystal morphology and impact sensitivity. Propellants Explos. Pyrotech. 2012, 37, 77–82. [Google Scholar] [CrossRef]
- Greenberg, B.L.; Kalyon, D.M.; Erol, M.; Mezger, M.; Lee, K.; Lusk, S. Analysis of slurry-coating effectiveness of CL-20 using grazing incidence X-ray diffraction. J. Energ. Mater. 2003, 21, 185–199. [Google Scholar] [CrossRef]
- Liao, S.R.; Luo, Y.J.; Sun, J.; Tan, H.M. Synthesis of waterborne polyurethane for coating on HNIW. Adv. Mater. Res. 2011, 194–196, 2425–2428. [Google Scholar] [CrossRef]
- LuJ, J.; UIrich, J. An improved prediction model of morphological modifications of organic crystals induced by additives. Cryst. Res. Technol. 2003, 38, 63–73. [Google Scholar]
- Xu, X.J.; Xiao, H.M.; Xiao, J.J.; Zhu, W.; Huang, H.; Li, J.S. Molecular dynamics. simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J. Phys. Chem. B 2006, 110, 7203–7207. [Google Scholar] [CrossRef]
- Xu, X.J.; Xiao, J.J.; Huang, H.; Li, J.S. Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs-primary theoretical studies on HEDM formulation design. Sci. Chin. Ser. B 2007, 50, 737–745. [Google Scholar] [CrossRef]
- Kamoleka, M.; Xu, H.; Wang, H. Molecular dynamics study of anti-wear erosion and corrosion protection of PTFE/Al2O3 (010) coating composite in water hydraulic valves. Coatings 2020, 10, 1214. [Google Scholar]
- Sun, J.L.; Hui, S.X.; Liu, P.G.; Sun, R.C.; Wang, M.J. Investigations on forming ether coated iron nanoparticle materials by first-principle calculations and molecular dynamic simulations, Coatings 2019, 9, 395. Coatings 2019, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, L.; Wang, Y.; Wu, H.C.; Cai, J.B.; Xu, S.S. Molecular dynamics simulation on the interaction between palygorskite coating and linear chain alkane base lubricant. Coatings 2021, 11, 286. [Google Scholar] [CrossRef]
- Yan, T.; Ren, H.; Ma, A.; Jiao, Q.; Wang, H. Effect of fluororubber coating on the properties of nano-aluminum powders. Acta Armamentarii. 2019, 40, 1611–1617. [Google Scholar]
- Li, S.C.; Xu, J.J.; Liu, Y. Characterization of interfacial micro-structures of explosive-binder composites by gas permeation. Propellants Explos. Pyrotech. 2019, 44, 1160–1166. [Google Scholar] [CrossRef]
- Li, C.Z.; Yan, N.; Ye, Y.K.; Lv, Z.X.; He, X.; Huang, J.H.; Zhang, N. Thermal analysis and stability of boron/potassium nitrate pyrotechnic composition at 180 °C. Appl. Sci. 2019, 9, 3630. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.B.; Tang, D.; Li, Y.; Xing, Z.R.; Wang, Y.; Wang, L.; Gao, Y.; Qin, W.Z. Influence of aluminum nanoparticles and binders on the laser initiation of cyclotrimethylenetrinitramine. Opt. Laser Technol. 2019, 120, 105677. [Google Scholar] [CrossRef]
- Good, R.J. Contact Angle, Wetting, and Adhesion: A Critical Review. J. Adhes. Sci. Technol. 1992, 6, 1269–1302. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermgravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
Samples | Mass Percent of Compositions (%) | ||
---|---|---|---|
ε-CL-20 | Wax | F2311 | |
NO.1 | 96.0 | 2.0 (internal) | 2.0 (external) |
NO.2 | 96.0 | 2.0 (external) | 2.0 (internal) |
NO.3 | 96.2 | 2.0 (internal) | 1.8 (external) |
NO.4 | 96.5 | 2.0 (internal) | 1.5 (external) |
Detection Liquid | Water | Glycerin | Diiodomethane |
---|---|---|---|
F2311 | 128.72 | 87.00 | 72.95 |
Wax | 87.6 | 83.5 | 51.8 |
System | γSL (mJ·m−2) | W (mJ·m−2) | S (mJ·m−2) |
---|---|---|---|
ε-CL-20/F2311 | 6.0 | 50.1 | 18.5 |
ε-CL-20/wax | 0.3 | 73.6 | 6.4 |
Sample | Ttr (°C) | Ton (°C) | Tp (°C) | ΔH (J·g−1) | Eα (kJ·mol−1) |
---|---|---|---|---|---|
Raw material | 170.9 | 234.2 | 238.4 | 1021.0 | 217.8 |
NO.1 | 177.9 | 240.7 | 241.9 | 1104.4 | 257.5 |
NO.2 | 176.5 | 238.6 | 239.8 | 1079.3 | 238.1 |
NO.3 | 177.0 | 239.4 | 240.0 | 1088.9 | 235.5 |
NO.4 | 182.8 | 238.9 | 239.5 | 1062.6 | 230.1 |
Sample | Mass Percent of Additives (%) | IS (%) | FS (%) | ||
---|---|---|---|---|---|
ε-CL-20 | Wax | F2311 | |||
Raw material | 100 | 0 | 0 | 100 | 100 |
NO.1 | 96.0 | 2.0 (internal) | 2.0 (external) | 60 | 68 |
NO.2 | 96.0 | 2.0 (external) | 2.0 (internal) | 72 | 80 |
NO.3 | 96.2 | 2.0 (internal) | 1.8 (external) | 64 | 72 |
NO.4 | 96.5 | 2.0 (internal) | 1.5 (external) | 80 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Shi, L.; Wu, C.; Pan, Q.; Fang, H.; Jiang, J.; Guo, X. Study on ε-CL-20 Coated with a Wax/F2311 Double-Layer Composite Structure. Coatings 2022, 12, 464. https://doi.org/10.3390/coatings12040464
Wang W, Shi L, Wu C, Pan Q, Fang H, Jiang J, Guo X. Study on ε-CL-20 Coated with a Wax/F2311 Double-Layer Composite Structure. Coatings. 2022; 12(4):464. https://doi.org/10.3390/coatings12040464
Chicago/Turabian StyleWang, Wei, Liping Shi, Chengcheng Wu, Qi Pan, Hua Fang, Jianwei Jiang, and Xueyong Guo. 2022. "Study on ε-CL-20 Coated with a Wax/F2311 Double-Layer Composite Structure" Coatings 12, no. 4: 464. https://doi.org/10.3390/coatings12040464
APA StyleWang, W., Shi, L., Wu, C., Pan, Q., Fang, H., Jiang, J., & Guo, X. (2022). Study on ε-CL-20 Coated with a Wax/F2311 Double-Layer Composite Structure. Coatings, 12(4), 464. https://doi.org/10.3390/coatings12040464