Optical and Laser-Induced Damage Characterization of Porous Structural Silicon Oxide Film with Hexagonal Period by Nanoimprint Lithography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample Preparation
2.3. Structural Characterization
2.4. Spectra Test
2.5. Laser-Induced Damage Test
2.6. Simulations
3. Results and Discussion
3.1. Optical Performance
3.2. Results of LIDT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chattopadhyaya, S.; Huang, Y.F.; Jend, Y.J.; Gangulyc, A.; Chen, K.H.; Chen, L.C. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 2010, 69, 1–35. [Google Scholar] [CrossRef]
- Hobbs, D.S.; MacLeod, B.D. High laser damage threshold surface relief micro-structures for antireflection applications. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 20 December 2007; SPIE: Bellingham, WA, USA, 2007; pp. 204–213. [Google Scholar]
- Du, Y.; Zhu, M.; Liu, Q.; Sui, Z.; Yi, K.; Jin, Y.; He, H. Laser-induced damage properties of subwavelength antireflective grating on fused silica. Thin Solid Film. 2014, 567, 47–53. [Google Scholar] [CrossRef]
- Du, Y.; Wu, X.; Zhu, M.; Le, Z. Theoretical and experimental research on laser-induced damage of cylindrical subwavelength grating. Opt. Express 2015, 23, 246069. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Huang, J.; Geng, F.; Liu, H.; Sun, L.; Yan, L.; Jiang, X.; Wu, W.; Zheng, W. High power laser antireflection subwavelength grating on fused silica by colloidal lithography. J. Phys. D Appl. Phys. 2016, 49, 265104. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, D.S.; MacLeod, B.D.; Riccobono, J.R. Update on the development of high-performance anti-reflecting surface relief micro-structures. In Proceedings of the Window and Dome Technologies and Materials X, Orlando, FL, USA, 2 May 2007; SPIE: Bellingham, WA, USA, 2007. [Google Scholar]
- Rahman, A.; Ashraf, A.; Xin, H.; Tong, X.; Sutter, P.; Eisaman, M.D.; Black, C.T. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat. Commun. 2015, 6, 5963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proust, J.; Fehrembach, A.L.; Bedu, F.; Ozerov, I.; Bonod, N. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum. Sci. Rep. 2016, 6, 24947. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Feng, Q.; Ng, B.; Luo, X.; Hong, M. Hybrid moth-eye structures for enhanced broadband antireflection characteristics. Appl. Phys. Express 2010, 3, 102602. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, J.; Jin, S.; Liang, P.; Tian, Y. Design of highly efficient transmission gratings with deep etched triangular grooves. Appl. Opt. 2012, 51, 7920–7933. [Google Scholar] [CrossRef]
- Bussière, B.; Sanner1, N.; Sentis1, M.; Utéza1, O. Importance of surface topography on pulsed laser-induced damage threshold of Sapphire crystals. Sci. Rep. 2017, 7, 1249. [Google Scholar] [CrossRef] [Green Version]
- Papernov, S.; Kozlov, A.A.; Oliver, J.B.; Smith, C.; Jensen, L.; Gunster, S.; Madebach, H.; Ristau, D. Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage. Opt. Eng. 2017, 56, 011004. [Google Scholar] [CrossRef]
- Matthews, M.J.; Shen, N.; Elhadj, S.; Miller, P.E.; Nelson, A.J.; Laurence, T.A.; Hamilton, J. Correlation of UV damage threshold with post-annealing in CVD-grown SiO2 overlayers on etched fused silica substrates. Proc. SPIE 2012, 8530, 85300B. [Google Scholar] [CrossRef] [Green Version]
- Shen, N.; Matthews, M.J.; Elhadj, S.; Miller, P.E.; Nelson, A.J.; Hamilton, J. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature. J. Phys. D Appl. Phys. 2013, 46, 165305. [Google Scholar] [CrossRef]
- Li, C.P.; Sun, Y.C.; Song, X.F.; Zhang, X.Q.; Shi, Z.H.; Wang, F.R.; Ye, X.; Chen, S.F.; Sun, L.X.; Huang, J.; et al. Capping a glass thin layer on the etched surface via plasma chemical vapor deposition for improving the laser damage performance of fused silica. Opt. Express 2019, 27, 2268–2280. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Cheng, H.; Zhang, Q.; Liu, M.; Li, Y. Ultraviolet laser damage properties of single-layer SiO2 film grown by atomic layer deposition. Opt. Mater. Express 2020, 10, 1981–1990. [Google Scholar] [CrossRef]
- Ghazaryan, L.; Sekman, Y.; Schröder, S.; Mühlig, C.; Stevanovic, I.; Botha, R.; Aghaee, M.; Creatore, M.; Tünnermann, A.; Szeghalmim, A. On the Properties of Nanoporous SiO2 Films for Single Layer Antireflection Coating. Adv. Eng. Mater. 2019, 21, 1801229. [Google Scholar] [CrossRef]
- Chi, F.T.; Zeng, Y.Y.; Liu, C.; Liang, D.; Li, Y.L.; Xie, R.S.; Pan, N.; Ding, C.C. Aggregation of silica nanoparticles in sol-gel processes to create optical coatings with controllable ultra-low refractive indices. ACS Appl. Mater. Interfaces 2020, 12, 16887–16895. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Luo, X.; Ou, X.; Li, L.; Chen, Y.; Yang, P.; Wang, S.; Duan, H. All-dielectric metasurfaces for polarization manipulation: Principles and emerging applications. Nanophotonics 2020, 9, 3755–3780. [Google Scholar] [CrossRef]
- Zhang, B.; Hendrickson, J.; Nader, N.; Chen, H.T.; Guo, J. Metasurface optical antireflection coating. Appl. Phys. Lett. 2014, 105, 241113. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, T.H.; Perez, J.C.; Ryckman, J.D. Nanoimprinting of refractive index: Patterning subwavelength effective media for flat optics. ACS Appl. Nano Mater. 2020, 3, 7377–7383. [Google Scholar] [CrossRef]
- Ryckman, J.D.; Liscidini, M.; Sipe, J.E.; Weiss, S.M. Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials. Nano Lett. 2011, 11, 1857–1862. [Google Scholar] [CrossRef]
- Barcelo, S.; Li, Z. Nanoimprint lithography for nanodevice fabrication. Nano Converg. 2016, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Moharam, M.G.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Amer. A 1995, 12, 1077–1086. [Google Scholar] [CrossRef]
- Lai, M.; Sridharan, G.M.; Parish, G.; Bhattacharya, S.; Keating, A. Multilayer porous silicon diffraction gratings operating in the infrared. Nanoscale Res. Lett. 2012, 7, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.P.; Jin, Y.X.; Ma, J.Y.; Shao, J.D.; Fan, Z.X. Analysis of restriction factors of widening diffraction bandwidth of multilayer dielectric grating. Chin. Phys. B 2010, 19, 104201. [Google Scholar] [CrossRef]
- Lu, M.; Ma, B.; Zhan, G.; Jiao, H.; Cheng, X. Effect of etching on the laser-induced damage properties of artificial defects under 1064-nm laser irradiation. Opt. Eng. 2014, 53, 122505. [Google Scholar] [CrossRef]
- Hocquet, S.; Neauport, J.; Bonod, N. The role of electric field polarization of the incident laser beam in the short pulse damage mechanism of pulse compression gratings. Appl. Phys. Lett. 2011, 99, 061101. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Chen, C.; Fang, H.; Chen, S. The mechanism and process of nanosecond pulsed-laser induced subwavelength periodic ripples on silica films. Appl. Surf. Sci. 2015, 337, 151–157. [Google Scholar] [CrossRef]
- Dua, Y.; Liu, S.; He, H.; Jin, Y.; Kong, F.; Guan, H. Laser-induced damage properties of antireflective porous glasses. Opt. Commun. 2012, 285, 5512–5518. [Google Scholar] [CrossRef]
- ISO 21254-1:2011, Lasers and Laser-Related Equipment–Test Methods for Laser-Induced Damage Threshold–Part 1: Definitions and General Principles. July 2011. Available online: https://www.iso.org/standard/43001.html (accessed on 15 July 2011).
- Batavičiutė, G.; Grigas, P.; Smalakys, L.; Melninkaitis, A. Revision of laser-induced damage threshold evaluation from damage probability data. Rev. Sci. Instrum. 2013, 84, 045108. [Google Scholar] [CrossRef]
- Li, J.C.; Su, J.H.; Xu, J.Q.; Yang, L.H. Combined test method of laser damage threshold for K9 glass. Laser Infrared 2017, 47, 963–967. [Google Scholar]
- Hoffman, B.N.; Kozlov, A.A.; Liu, N.; Huang, H.; Oliver, J.B.; Rigatti, A.L.; Kessler, T.J.; Shestopalov, A.A.; Demosi, S.G. Mechanisms of picosecond laser-induced damage in common multilayer dielectric gratings. Opt. Express 2020, 28, 24928. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Liu, H.J.; Huang, J.; Ye, X.; Xia, H.D.; Li, Q.Z.; Jiang, X.D.; Wu, W.D.; Yang, L.M.; Zheng, W.G. Reaction ion etching process for improving laser damage resistance of fused silica optical surface. Opt. Express 2016, 24, 243185. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Su, J.; Xu, J.; Yang, L.; Yang, G. Optical and Laser-Induced Damage Characterization of Porous Structural Silicon Oxide Film with Hexagonal Period by Nanoimprint Lithography. Coatings 2022, 12, 351. https://doi.org/10.3390/coatings12030351
Li Y, Su J, Xu J, Yang L, Yang G. Optical and Laser-Induced Damage Characterization of Porous Structural Silicon Oxide Film with Hexagonal Period by Nanoimprint Lithography. Coatings. 2022; 12(3):351. https://doi.org/10.3390/coatings12030351
Chicago/Turabian StyleLi, Yuan, Junhong Su, Junqi Xu, Lihong Yang, and Guoliang Yang. 2022. "Optical and Laser-Induced Damage Characterization of Porous Structural Silicon Oxide Film with Hexagonal Period by Nanoimprint Lithography" Coatings 12, no. 3: 351. https://doi.org/10.3390/coatings12030351
APA StyleLi, Y., Su, J., Xu, J., Yang, L., & Yang, G. (2022). Optical and Laser-Induced Damage Characterization of Porous Structural Silicon Oxide Film with Hexagonal Period by Nanoimprint Lithography. Coatings, 12(3), 351. https://doi.org/10.3390/coatings12030351