Experimental Study of Irradiation of Thin Oxide and Mo/Si Multilayers by High Brightness Broadband VUV/UV Radiation and Their Degradation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Features of Gas-Dynamic Response from Irradiated Oxide and Mo/Si Multilayers
3.2. Modification of ZrO2/SiO2 and HfO2/SiO2 Multilayers under Radiation Exposure
3.3. Modification of Mo/Si Multilayers under Radiation Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fournet, C.; Pinot, B.; Geenen, B.; Ollivier, F.; Alexandre, W.; Floch, H.G.; Roussel, A.; Cordillot, C.; Billon, D. High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric systems. Laser-Induc. Damage Opt. Mater. 1991, 1624, 282–293. [Google Scholar] [CrossRef]
- Chorel, M.; Lanternier, T.; Lavastre, E.; Bonod, N.; Bousquet, B.; Néauport, J. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power laser. Opt. Express 2018, 26, 11764. [Google Scholar] [CrossRef] [Green Version]
- Zhupanov, V.; Kozlov, I.; Fedoseev, V.; Konotopov, P.; Trubetskov, M.; Tikhonravov, A. Production of Brewster angle thin film polarizers using a ZrO2/SiO2 pair of materials. Appl. Opt. 2017, 56, C30–C34. [Google Scholar] [CrossRef]
- Pellicori, S.F.; Martinez, C.L. UV optical properties of thin film oxide layers deposited by different processes. Appl. Opt. 2011, 50, 5559–5566. [Google Scholar] [CrossRef]
- Wang, J.; Hart, G.A.; Oudard, J.F.; Wamboldt, L.; Roy, B.P. HfO2/SiO2 multilayer based reflective and transmissive optics from the IR to the UV. In Proceedings of the Advanced Optics for Defense Applications: UV through LWIR, Baltimore, MA, USA, 17–19 April 2016; pp. 98220Z-1–98220Z-9. [Google Scholar] [CrossRef]
- Anzellotti, J.F.; Smith, D.J.; Sczupak, R.J.; Chrzan, Z.R. Stress and environmental shift characteristics of HfO2/SiO2 multilayer coatings. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 13 May 1997; pp. 258–264. [Google Scholar]
- Jiao, H.; Zhang, J.; Wang, Z.; Bao, G.; Niu, X.; Cheng, X. HfO2-SiO2 mixed film deposited by Ion Assisted Deposition Coevaporation. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 23 November 2017; pp. 1044726-1–1044726-9. [Google Scholar] [CrossRef]
- Alvarado-Beltrán, C.; Almaral-Sánchez, J.; Ramirez-Bon, R. Low temperature processing of multilayer dielectrics mirrors by sol–gel method. Mater. Lett. 2015, 161, 523–526. [Google Scholar] [CrossRef]
- Shao, S.; Shao, J.; He, H.; Fan, Z. Stress analysis of ZrO2⁄SiO2 multilayers deposited on different substrates with different thickness periods. Opt. Lett. 2005, 30, 2119–2121. [Google Scholar] [CrossRef]
- Zhao, S.; Lv, H.; Wang, H.; Wang, T.; Yan, L.; Yuan, X.; Zheng, W. Preparation of sol-gel ZrO2/SiO2 multi-layer film based on UV-irradiation treatment. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2009, Shanghai, China, 30 August–3 September 2009; p. ThD2_3. [Google Scholar]
- Skriabin, A.S.; Telekh, V.D.; Pavlov, A.V.; Chesnokov, D.A.; Zhupanov, V.G.; Novikov, P.A. Modification and optical degradation of thin multilayers under VUV/UV radiation from compressed plasma flows. J. Phys. Conf. Ser. 2021, 2064, 012069-1–012069-4. [Google Scholar] [CrossRef]
- Reicher, D.; Navarro, M.; Sydenstricker, R.; Oberling, J.; Marquez, M.; Villafuert, J.; Ogloza, A.A.; Pentony, J.; Langston, P.; O’Conner, D.; et al. Damage thresholds of HfO2/SiO2 and ZrO2/SiO2 high reflectors at 1.064 microns deposited by reactive DC magnetron sputtering. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 21 February 2004; pp. 26–33. [Google Scholar] [CrossRef]
- Babayants, G.I.; Garanin, S.G.; Zhupanov, V.G.; Klyuev, E.V.; Savkin, A.V.; Sukharev, S.A.; Sharov, O.A. Development and study of dielectric coatings with a high radiation resistance. Quantum Electron. 2005, 35, 663–666. [Google Scholar] [CrossRef]
- Han, C.; Li, G.; Ma, G.; Shi, J.; Li, Z.; Yong, Q.; Wang, H. Effect of UV Radiation on Structural Damage and Tribological Properties of Mo/MoS2-Pb-PbS Composite Films. Coatings 2022, 12, 100. [Google Scholar] [CrossRef]
- Lider, V.V. Multilayer X-ray interference structures. Uspekhi Fiz. Nauk. 2018, 189, 1137–1171. [Google Scholar] [CrossRef]
- Benoit, N.; Schröder, S.; Yulin, S.; Feigl, T.; Duparré, A.; Kaiser, N.; Tünnermann, A. Extreme-ultraviolet-induced oxidation of Mo/Si multilayers. Appl. Opt. 2008, 47, 3455–3462. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Q.; Qi, R.; Xiao, L.; Zhang, Z.; Wang, Z. Improvement of the Microstructure and X-ray Performance of Ultrathin Ru/C Multilayer Mirror after High Temperature Treatment. Coatings 2021, 11, 45. [Google Scholar] [CrossRef]
- Pearton, S.J.; Aitkaliyeva, A.; Xian, M.; Ren, F.; Khachatrian, A.; Ildefonso, A.; Islam, Z.; Rasel, A.J.; Haque, A.; Polyakov, A.Y.; et al. Review—Radiation Damage in Wide and Ultra-Wide Bandgap Semiconductors. ECS J. Solid State Sci. Technol. 2021, 10, 055008. [Google Scholar] [CrossRef]
- Lushchik, A.; Lushchik, C.; Popov, A.; Schwartz, K.; Shablonin, E.; Vasil’Chenko, E. Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 374, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Kuzenov, V.; Ryzhkov, S. The Qualitative and Quantitative Study of Radiation Sources with a Model Configuration of the Electrode System. Symmetry 2021, 13, 927. [Google Scholar] [CrossRef]
- Solyakov, D.G.; Petrov, Y.V.; Garkusha, I.; Chebotarev, V.V.; Ladygina, M.S.; Cherednichenko, T.N.; Morgal’, Y.I.; Kulik, N.V.; Stal’Tsov, V.V.; Eliseev, D.V. Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep. 2013, 39, 986–992. [Google Scholar] [CrossRef]
- Protasov, Y.S. A Pulsed Source of Short-Wave UV Radiation of High Power Density. Instrum. Exp. Tech. 2003, 46, 206–210. [Google Scholar] [CrossRef]
- Kalashnikov, E.V.; Rachkulik, S.N. Radiation-induced damage in calcium fluoride ionic crystals exposed to high-intensity ultraviolet and vacuum ultraviolet light. Tech. Phys. 2007, 52, 604–609. [Google Scholar] [CrossRef]
- Astashynski, V.M.; Dzahnidze, H.M.; Kostyukevich, E.A.; Kuzmitski, A.M.; Shoronov, P.N.; Shymanski, V.I.; Uglov, V.V. Generation of Erosion Compression Plasma Flows in a Miniature Plasma Accelerator and Their Capability for Formation of Thin Nanostructured Coating. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2020, 24, 99–107. [Google Scholar] [CrossRef]
- Anevsky, S.; Vernyi, A.; Kozlov, N.; Konev, I.; Malaschenko, V.; Morozov, O.; Tsygankov, P. Use of synchrotron radiation for calibration of a working measuring instrument based on plasma focus. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1989, 282, 714–715. [Google Scholar] [CrossRef]
- Kamrukov, A.S.; Kozlov, N.P.; Kuznetsov, S.G.; Protasov, Y.S. High-brightness ultraviolet radiation source based on a cumulative plasmadynamic discharge. Sov. J. Quantum Electron. 1982, 12, 910–914. [Google Scholar] [CrossRef]
- Pavlov, A.; Protasov, Y.; Telekh, V.; Shchepanuk, T. Laser holographic interferometry of short ultraviolet radiation with high power density interaction with condensed metters. Sci. Vis. 2019, 11, 111–125. [Google Scholar] [CrossRef]
- Couprie, M. New generation of light sources: Present and future. J. Electron Spectrosc. Relat. Phenom. 2014, 196, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, K.; Freeman, D.E.; Parkinson, W.H. Atlas of the Schumann–Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm. J. Phys. Chem. Ref. Data 1984, 13, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Fukui, K.; Ikematsu, R.-I.; Imoto, Y.; Kitaura, M.; Nakagawa, K.; Ejima, T.; Nakamura, E.; Sakai, M.; Hasumoto, M.; Kimura, S.-I. Design and performance of a new VIS–VUV photoluminescence beamline at UVSOR-III. J. Synchrotron Radiat. 2014, 21, 452–455. [Google Scholar] [CrossRef]
- Tao, Y.; Huang, Y.; Gao, Z.; Zhuang, H.; Zhou, A.; Tan, Y.; Li, D.; Sun, S. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. J. Synchrotron Radiat. 2009, 16, 857–863. [Google Scholar] [CrossRef]
- Popović, D.; Mozetič, M.; Vesel, A.; Primc, G.; Zaplotnik, R. Review on vacuum ultraviolet generation in low-pressure plasmas. Plasma Process. Polym. 2021, 18, e2100061. [Google Scholar] [CrossRef]
- Pankratov, V.; Pankratova, V.; Popov, A.I. Luminescence and Vacuum Ultraviolet Excitation Spectroscopy of Nanophosphors under Synchrotron Irradiation. Phys. Status Solidi (b) 2021, 2100475. [Google Scholar] [CrossRef]
- Velpula, P.K.; Kramer, D.; Rus, B. Femtosecond Laser-Induced Damage Characterization of Multilayer Dielectric Coatings. Coatings 2020, 10, 603. [Google Scholar] [CrossRef]
- Khvesyuk, V.I.; Skryabin, A.S. Heat conduction in nanostructures. High Temp. 2017, 55, 434–456. [Google Scholar] [CrossRef]
- Fedorenko, A.I.; Garbuz, A.S.; Kondratenko, V.; Pershin, Y.P.; Pukha, V.E.; Poltseva, O.V.; Yulin, S.A.; Zubarev, E.N. Thermally induced structural and phase transformations of Mo-Si and MoSi 2 -Si X-ray multilayer mirrors. In Proceedings of the X-ray Optics and Surface Science, Moscow, Russia, 10 November 1994; pp. 15–24. [Google Scholar] [CrossRef]
- Settles, G.S. Schlieren and Shadowgraph Techniques; Springer: Berlin/Heidelberg, Germany, 2001; pp. 39–75. ISBN 978-3-642-63034-7. [Google Scholar]
- Skriabin, A.S.; Telekh, V.D.; Pavlov, A.V.; Chesnokov, D.A.; Zhupanov, V.G.; Novikov, P.A. Visualization of the gas flows that formed above the thin-film coatings under VUV radiation influence. J. Phys. Conf. Ser. 2021, 2127, 012005-1–012005-5. [Google Scholar] [CrossRef]
- Popov, N.L.; Uspenskii, Y.A.; Turyanskii, A.G.; Pirshin, I.V.; Vinogradov, A.V.; Platonov, Y.Y. Determination of the parameters of multilayer nanostructures using two-wave X-ray reflectometry. Semiconductors 2003, 37, 675–680. [Google Scholar] [CrossRef]
- Field, E.S.; Kletecka, D.E. The impact of contamination and aging effects on the long-term laser-damage resistance of SiO2/HfO2/TiO2 high-reflection coatings for 1054nm. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 16 November 2018; p. 108051T. [Google Scholar] [CrossRef]
- Field, E.S.; Galloway, B.R.; Kletecka, D.E.; Rambo, P.K.; Smith, I.C. Dual-wavelength laser-induced damage threshold of a HfO2/SiO2 dichroic coating developed for high transmission at 527 nm and high reflection at 1054 nm. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 20 November 2019; pp. 1117314-1–1117314-7. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.; Wang, J.; Wu, G.; Chen, L. Sol–gel derived ZrO2–SiO2 highly reflective coatings. Int. J. Inorg. Mater. 2000, 2, 319–323. [Google Scholar] [CrossRef]
- Available online: https://physics.nist.gov/PhysRefData/FFast/html/form.html (accessed on 14 February 2022).
- Deevi, S.C. Differential thermal analysis of exothermic reactions in the synthesis of MoSi. J. Mater. Sci. Lett. 1994, 13, 868–871. [Google Scholar] [CrossRef]
- Zhang, S.; Munir, Z.A. Synthesis of molybdenum silicides by the self-propagating combustion method. J. Mater. Sci. 1991, 26, 3685–3688. [Google Scholar] [CrossRef]
- Mukasyan, A.S.; Shuck, C. Kinetics of SHS reactions: A review. Int. J. Self-Propagating High-Temp. Synth. 2017, 26, 145–165. [Google Scholar] [CrossRef]
- Illeková, E.; Gachon, J.-C.; Rogachev, A.; Grigoryan, H.; Schuster, J.C.; Nosyrev, A.; Tsygankov, P. Kinetics of intermetallic phase formation in the Ti/Al multilayers. Thermochim. Acta 2008, 469, 77–85. [Google Scholar] [CrossRef]
- Gachon, J.-C.; Rogachev, A.; Grigoryan, H.; Illarionova, E.; Kuntz, J.-J.; Kovalev, D.; Nosyrev, A.; Sachkova, N.; Tsygankov, P. On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms. Acta Mater. 2005, 53, 1225–1231. [Google Scholar] [CrossRef]
- Nist Chemistry Webbook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 14 February 2022).
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: London, UK, 1959. [Google Scholar]
- Available online: https://www.mit.edu/~6.777/matprops/matprops.htm (accessed on 14 February 2022).
- Trost, M.; Schröder, S.; Duparré, A.; Risse, S.; Feigl, T.; Zeitner, U.D.; Tünnermann, A. Structured Mo/Si multilayers for IR-suppression in laser-produced EUV light sources. Opt. Express 2013, 21, 27852–27864. [Google Scholar] [CrossRef]
Parameter | Bilayer Type | ||
---|---|---|---|
HfO2/SiO2 | ZrO2/SiO2 | Mo/Si | |
Bilayer number | 11 | 11 | 300 |
Bilayer thickness (nm) | 316.8 | 306.0 | 11.4 |
Thickness ratio | δHfO2/δSiO2 ≈ 0.74 | δZrO2/δSiO2 ≈ 0.68 | δSi/δMo ≈ 0.56 |
Total thickness (nm) | 3484.8 | 3366.0 | 3420.0 |
Parameter | HfO2/SiO2 Multilayer | ZrO2/SiO2 Multilayer |
---|---|---|
Hardness (GPa) | ||
before | 5.34 ± 0.29 | 5.69 ± 0.29 |
after | 4.90 ± 0.22 (air) | 4.10 ± 0.10 (air) |
4.31 ± 0.34 (neon) | 3.14 ± 0.43 (neon) | |
Young’s modulus (GPa) | ||
before | 75.36 ± 5.44 | 81.38 ± 6.91 |
after | 65.1 ± 3.3 (air) | 67.0 ± 7.0 (air) |
76.0 ± 11.0 (neon) | 59.1 ± 13.2 (neon) | |
Roughness Ra (nm) | 0.49 | |
before | 0.67 (air, direction s1) | |
after | 0.58 (air, direction s2) | |
0.43 (neon, direction s1) | ||
0.54 (neon, direction s2) |
Point | O | Si | Cr | Fe | Ni | Mo | Total |
---|---|---|---|---|---|---|---|
Irradiated in Air | |||||||
1 | 5.38 | 24.06 | 0.25 | 2.39 | - | 67.92 | 100.00 |
2 | 15.67 | 18.82 | 3.16 | 17.62 | 2.37 | 42.36 | 100.00 |
3 | 3.72 | 24.32 | 0.56 | 2.11 | - | 69.29 | 100.00 |
4 | 14.13 | 19.60 | 1.81 | 9.21 | 1.76 | 53.49 | 100.00 |
5 | 3.63 | 24.25 | 0.86 | 2.38 | - | 68.88 | 100.00 |
6 | 9.78 | 23.08 | 0.54 | 2.27 | 0.29 | 64.04 | 100.00 |
Irradiated in Neon | |||||||
1 | 15.36 | 25.90 | 0.47 | 1.48 | - | 56.79 | 100.00 |
2 | 20.79 | 27.39 | 0.29 | 1.40 | - | 50.14 | 100.00 |
3 | 24.50 | 33.38 | 0.18 | 1.01 | - | 40.93 | 100.00 |
4 | 29.69 | 41.21 | 0.27 | 0.70 | - | 28.13 | 100.00 |
5 | 47.05 | 52.95 | - | - | - | - | 100.00 |
6 | 29.79 | 39.30 | 0.16 | 0.81 | - | 29.94 | 100.00 |
7 | 45.93 | 54.07 | - | - | - | - | 100.00 |
8 | 31.63 | 40.86 | 0.21 | 0.21 | - | 27.09 | 100.00 |
Coating | Parameter | ||
---|---|---|---|
Thickness (nm) | Density (g/cm3) | Roughness (nm) | |
Mo/Si bilayer | |||
SiO2 (top) | 1.6 | 2.20 | 0.6 |
Si | 4.1 | 2.33 | 0.9 |
Mo | 7.3 | 8.2 | 1.3 |
Fused quartz (substrate) | - | 2.50 | 0.5 |
HfO2/SiO2 bilayer | |||
SiO2 | 181.7 | 2.20 | 0.3 |
HfO2 | 135.1 | 9.68 | 1.4 |
Fused quartz (substrate) | - | 2.50 | 2.2 |
Energy (kJ/mol) | HfO2/SiO2 or ZfO2/SiO2 Multilayers | Mo/Si Multilayer |
---|---|---|
Degradation threshold | 590 (silica evaporation) 610 (hafnia evaporation) 810 (zirconia evaporation) | 139–167 (MoSi2 formation) |
Discharge in air | 25–28 | 10–12 |
Discharge in neon | 750–820 | 660–710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telekh, V.D.; Pavlov, A.V.; Kirillov, D.V.; Vorob’ev, E.V.; Turyanskiy, A.G.; Senkov, V.M.; Tsygankov, P.A.; Parada-Becerra, F.F.; Vesnin, V.R.; Skriabin, A.S. Experimental Study of Irradiation of Thin Oxide and Mo/Si Multilayers by High Brightness Broadband VUV/UV Radiation and Their Degradation. Coatings 2022, 12, 290. https://doi.org/10.3390/coatings12020290
Telekh VD, Pavlov AV, Kirillov DV, Vorob’ev EV, Turyanskiy AG, Senkov VM, Tsygankov PA, Parada-Becerra FF, Vesnin VR, Skriabin AS. Experimental Study of Irradiation of Thin Oxide and Mo/Si Multilayers by High Brightness Broadband VUV/UV Radiation and Their Degradation. Coatings. 2022; 12(2):290. https://doi.org/10.3390/coatings12020290
Chicago/Turabian StyleTelekh, Victor D., Aleksei V. Pavlov, Daniil V. Kirillov, Evgeny V. Vorob’ev, Alexander G. Turyanskiy, Viacheslav M. Senkov, Petr A. Tsygankov, Freddy F. Parada-Becerra, Vladimir R. Vesnin, and Andrei S. Skriabin. 2022. "Experimental Study of Irradiation of Thin Oxide and Mo/Si Multilayers by High Brightness Broadband VUV/UV Radiation and Their Degradation" Coatings 12, no. 2: 290. https://doi.org/10.3390/coatings12020290
APA StyleTelekh, V. D., Pavlov, A. V., Kirillov, D. V., Vorob’ev, E. V., Turyanskiy, A. G., Senkov, V. M., Tsygankov, P. A., Parada-Becerra, F. F., Vesnin, V. R., & Skriabin, A. S. (2022). Experimental Study of Irradiation of Thin Oxide and Mo/Si Multilayers by High Brightness Broadband VUV/UV Radiation and Their Degradation. Coatings, 12(2), 290. https://doi.org/10.3390/coatings12020290