Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Silica Material and of Silver-Based Silica Material
2.3. Analysis of the Sol–Gel Silica Materials (without and with Silver Nanoparticles) and of Hybrid Films
2.3.1. FTIR–ATR
2.3.2. TEM–EDX
2.3.3. AFM Analysis
2.3.4. Raman Spectroscopy (RS)
2.3.5. UV–Vis Spectroscopy
3. Results and Discussion
3.1. FTIR–ATR
3.2. TEM–EDX
3.3. AFM Analysis
3.4. Raman Spectroscopy (RS)
3.5. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef] [PubMed]
- Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 2012, 24, 19–29. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, J.; Shrestha, L.K.; Ariga, K.; Ji, Q. Antibacterial effect of silver-incorporated flake-shell nanoparticles under dual-modality. ACS Appl. Mater. Interfaces 2016, 8, 18922–18929. [Google Scholar] [CrossRef]
- Cao, G.F.; Sun, Y.; Chen, J.G.; Song, L.P.; Jiang, J.Q.; Liu, Z.T.; Liu, Z.W. Sutures modified by silver-loaded montmorillonite with antibacterial properties. Appl. Clay Sci. 2014, 93–94, 102–106. [Google Scholar] [CrossRef]
- Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75, 2973–2976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.-J.; Yi, S.-C.; Oh, S.-G. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 2003, 24, 4921–4928. [Google Scholar] [CrossRef]
- Ghorbanpour, M. Stability modification of SPR silver nano-chips by alkaline condensation of aminopropyltriethoxysilane. J. Nanostruct. 2015, 5, 105–110. [Google Scholar] [CrossRef]
- Varma, R.S.; Kothari, D.C.; Tewari, R. Nano-composite soda lime silicate glass prepared using silver ion exchange. J. NonCryst. Solids 2009, 355, 1246–1251. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzałka, M.; Deryło-Marczewska, A.; Skorik, Y.A.; Petrova, V.A.; Choma, A.; Komaniecka, I. Silver nanoparticles on chitosan/silica nanofibers: Characterization and antibacterial activity. Int. J. Mol. Sci. 2020, 21, 166. [Google Scholar] [CrossRef] [Green Version]
- Hilonga, A.; Kim, J.K.; Sarawade, P.B.; Quang, D.V.; Shao, G.; Elineema, G.; Taik Kim, H. Silver-doped silica powder with antibacterial properties. Powder Technol. 2012, 215–216, 219–222. [Google Scholar] [CrossRef]
- Alarifi, I.M. Advanced selection materials in solar cell efficiency and their properties—A comprehensive review. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Ziegler, M.; Dathe, A.; Pollok, K.; Langenhorst, F.; Hübner, U.; Wang, D.; Schaaf, P. Metastable atomic layer deposition: 3D self-assembly toward ultradark materials. ACS Nano 2020, 14, 15023–15031. [Google Scholar] [CrossRef] [PubMed]
- Racles, C.; Nistor, A.; Cazacu, M. A silica-silver nanocomposite obtained by sol-gel method in the presence of silver nanoparticles. Cent. Eur. J. Chem. 2013, 11, 1689–1698. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.A.; Padavettan, V. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—A review. J. Nanomat. 2012, 2012, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gankhuyag, S.; Bae, D.S.; Lee, K.; Lee, S. One-pot synthesis of SiO2@Ag mesoporous nanoparticle coating for inhibition of Escherichia coli bacteria on various surfaces. Nanomaterials 2021, 11, 549. [Google Scholar] [CrossRef]
- Akhavan, O. Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 2009, 336, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L.M. Silica coating of silver nanoparticles using a modified Stöber method. J. Colloids Interface Sci. 2005, 283, 392–396. [Google Scholar] [CrossRef]
- Wojtysiak, S.; Solla-Gullon, J.; Dluzewski, P.; Kudelski, A. Synthesis of core–shell silver–platinum nanoparticles, improving shell integrity. Colloids Surf. A 2014, 441, 178–183. [Google Scholar] [CrossRef]
- Bahadur, N.M.; Watanabe, S.; Furusawa, T.; Sato, M.; Kurayama, F.; Siddiquey, I.A.; Kobayashi, Y.; Suzuki, N. Rapid one-step synthesis, characterization and functionalization of silica coated gold nanoparticles. Colloids Surf. A 2011, 392, 137–144. [Google Scholar] [CrossRef]
- Arun, K.K.V.; Seema, R.; Aiswarya, R.; Vineetha, V.R. Sol-gel synthesized silver nanoparticles doped silica/titanosilicate films for plasmonic solar cell applications. In Proceedings of the AIP Conference Proceedings: LET THERE BE LIGHT: Reflections of a Congress on Light, Kerala, India, 9–11 January 2017; Volume 1849, p. 020017. [Google Scholar] [CrossRef]
- Bois, L.; Bessueille, F.; Chassagneuxa, F.; Battiec, Y.; Destouches, N.; Hubert, C.; Boukenter, A.; Parola, S. Silver nanoparticles growth in a mesoporous silica film templated with the F127 triblock copolymer. Colloids Surf. A Physicochem. Eng. Asp. 2008, 325, 86–92. [Google Scholar] [CrossRef]
- Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Zamarreño, C.R.; Arregui, F.J.; Matías, I.R. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles. Nanoscale Res. Lett. 2011, 6, 305. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Chen, S.; Li, F.; Liu, K.; Liu, L. Hybrids of silver nanowires and silica nanoparticles as morphology controlled conductive filler applied in flexible conductive nanocomposites. Composites Part A 2015, 73, 195–203. [Google Scholar] [CrossRef]
- Huang, R.-S.; Hou, B.-F.; Li, H.-T.; Fu, X.-C.; Xie, C.-G. Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Adv. 2015, 5, 61184. [Google Scholar] [CrossRef]
- Gangadoo, S.; Elbourne, A.; Medvedev, A.E.; Cozzolino, D.; Truong, Y.B.; Crawford, R.J.; Wang, P.-Y.; Truong, V.K.; Chapman, J. Facile route of fabricating long-term microbicidal silver nanoparticle clusters against shiga toxin-producing Escherichia coli O157:H7 and Candida auris. Coatings 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Khan, M.R.; Paranthamon, T.; Laffir, F.; Guha, A.K.; Sekaran, G.; Mandal, A.B. Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 2013, 5, 5549–5560. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, R.A.; Studdert, C.A.; Pellice, S. Silver doped silica-methyl hybrid coatings. Structural evolution and antibacterial properties. Surf. Coat. Technol. 2014, 244, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Schneid, A.C.; Pereira, M.B.; Horowitz, F.; Mauler, R.S.; Matte, C.R.; Klein, M.P.; Hertz, P.F.; Costa, T.M.H.; de Menezes, E.W.; Benvenutti, E.V. Silver nanoparticle thin films deposited on glass surface using an ionic silsesquioxane as stabilizer and as crosslinking agent. J. Braz. Chem. Soc. 2015, 26, 1004–1012. [Google Scholar] [CrossRef]
- Mejía, H.F.G.; Yohai, L.; Pedetta, A.; Seitz, K.H.; Procaccini, R.A.; Pellice, S.A. Epoxy-silica/clay nanocomposite for silver-based antibacterial thin coatings: Synthesis and structural characterization. J. Colloid Interface Sci. 2017, 508, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shi, Z.; Cui, Z.; Zhu, S. Silver chloride loaded hollow mesoporous silica particles and their application in the antibacterial coatings on denture base. Chem. Res. Chin. Univ. 2018, 34, 495–499. [Google Scholar] [CrossRef]
- Pilipavicius, J.; Chodosovskaja, A.; Beganskiene, A.; Kareiva, A. Silver nanoprisms self-assembly on differently functionalized silica surface. IOP Conf. Ser. Mater. Sci. Eng. 2015, 77, 012006. [Google Scholar] [CrossRef]
- Rădițoiu, V.; Purcar, V.; Rădițoiu, A.; Raduly, M.F.; Frone, A.N.; Anastasescu, M.; Stoica, M.; Alexandrescu, E.; Şomoghi, R.; Manea, R.; et al. Sol–gel hybrid films based on organosilanes with long alkyl chains. J. Coat. Technol. Res. 2020, 17, 1389–1399. [Google Scholar] [CrossRef]
- Todorova, E.; Chernev, G.; Okolie, N.; Salvado, I.M. Structure and properties of innovative silica hybrid materials synthesized for environmental applications. Biotechnol. Biotechnol. Equip. 2015, 29, S44–S51. [Google Scholar] [CrossRef] [Green Version]
- Purcar, V.; Rădiţoiu, V.; Dumitru, A.; Nicolae, C.-A.; Frone, A.N.; Anastasescu, M.; Rădiţoiu, A.; Raduly, M.F.; Gabor, R.A.; Căprărescu, S. Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method. Appl. Surf. Sci. 2019, 487, 819–824. [Google Scholar] [CrossRef]
- Spataru, C.I.; Purcar, V.; Ghiurea, M.; Radovici, C.; Stanga, G.; Donescu, D. Effects of the nanoassociation of hexadecyltrimethoxysilane precursors on the sol–gel process. J. Sol-Gel Sci. Technol. 2013, 65, 344–352. [Google Scholar] [CrossRef]
- Wagh, P.B.; Kumar, R.; Patel, R.P.; Singh, I.K.; Ingale, S.V.; Gupta, S.C.; Mahadik, D.B.; Venkateswara Rao, A. Hydrophobicity measurement studies of silica aerogels using ftir spectroscopy, weight difference method, contact angle method and k-f titration method. J. Chem. Bio. Phy. Sci. Sec. A 2015, 5, 2350–2359. [Google Scholar]
- Almeida, R.M.; Marques, A.C. Characterization of sol-gel materials by infrared spectroscopy. In Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer: Berlin, Germany, 2018; pp. 1121–1151. [Google Scholar] [CrossRef]
- Duhan, S.; Devi, S.; Srivastava, M. Characterization of nanocrystalline Ag/SiO2 nanocomposites and synthesis by wet chemical method. Indian J. Pure Appl. Phys. 2010, 48, 271–275. [Google Scholar]
- Coates, J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2000, 12, 10815–10837. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Y.; Zhang, H.; Yan, H.; Lv, H.; Jiang, B. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two step catalysis. ACS Appl. Mater. Interfaces 2014, 6, 11470–11475. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhu, K.; Yue, B.; He, H.; Dickinson, C. HRTEM of negative replicas of mesoporous silica. Stud. Surf. Sci. Catal. 2004, 154, 924–930. [Google Scholar] [CrossRef]
- Purcar, V.; Şomoghi, R.; Niţu, S.G.; Nicolae, C.-A.; Alexandrescu, E.; Gîfu, I.C.; Gabor, A.R.; Stroescu, H.; Ianchiş, R.; Căprărescu, S.; et al. The effect of different coupling agents on nano-ZnO materials obtained via the sol–gel process. Nanomaterials 2017, 7, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.W.; Nam, S.; Lim, S.; Kim, D.; Kim, H.; Sung, B.J. Effects of size and interparticle interaction of silica nanoparticles on dispersion and electrical conductivity of silver/epoxy nanocomposites. J. Appl. Phys. 2014, 115, 154307. [Google Scholar] [CrossRef]
- Kalampounias, A.G. IR and Raman spectroscopic studies of sol-gel derived alkaline-earth silicate glasses. Bull Mat. Sci. 2011, 3, 299–303. [Google Scholar] [CrossRef]
- Barrio, R.A.; Geleener, F.L.; Martinez, E.; Elliot, R.J. Regular ring dynamics in AX2 tetrahedral glasses. Phys. Rev. 1993, B48, 15672. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Patsis, A.P.; Kordas, G. Infrared-reflectance spectra of heat-treated sol-gel-derived silica. Phys. Rev. 1993, B48, 12499. [Google Scholar] [CrossRef]
- Stolen, R.H.; Walrafen, G.E. Water and its relation to broken bond defects in fused silica. J. Chem. Phys. 1976, 64, 2623. [Google Scholar] [CrossRef]
- McMillan, P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Miner. 1984, 69, 622–644. [Google Scholar]
- Matson, D.W.; Sharma, S.K.; Philpotts, J.A. The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation. J. Non-Cryst. Solids 1983, 58, 323–352. [Google Scholar] [CrossRef]
- Zhu, M.; Qi, H.; Wang, B.; Wang, H.; Zhang, D.; Lv, W. Enhanced visible transmittance and reduced transition temperature for VO2 thin films modulated by index-tunable SiO2 anti-reflection coatings. RCS Adv. 2018, 8, 28953–28959. [Google Scholar] [CrossRef] [Green Version]
- Al-Azzawi, A. Physical Optics: Principles and Practices, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 31. [Google Scholar] [CrossRef]
- Katagiri, K.; Yamazaki, S.-i.; Inumaru, K.; Koumoto, K. Anti-reflective coatings prepared via layer-by-layer assembly of mesoporous silica nanoparticles and polyelectrolytes. Polym. J. 2015, 47, 190–194. [Google Scholar] [CrossRef]
- Purcar, V.; Stamatin, I.; Cinteza, O.; Petcu, C.; Raditoiu, V.; Ghiurea, M.; Miclaus, T.; Andronie, A. Fabrication of hydrophobic and antireflective coatings based on hybrid silica films by sol–gel process. Surf. Coat. Technol. 2012, 206, 4449–4454. [Google Scholar] [CrossRef]
- Yang, H.L.; Hao, L.; Wang, J.N.; Zhang, Z.N.; Liu, X.P.; Jiang, L.J. Self-cleaning and antireflective films for all-glass evacuated tube solar collectors. Energy Procedia 2015, 69, 226–232. [Google Scholar] [CrossRef] [Green Version]
Sample | TEOS (mL) | MTES (mL) | HDTMES (mL) | Concentration of AgNO3 Solution (wt. %) |
---|---|---|---|---|
A | 3.15 | 2.82 | 1.05 | - |
B | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purcar, V.; Rădiţoiu, V.; Raduly, F.M.; Rădițoiu, A.; Anastasescu, M.; Popa, M.; Căprărescu, S.; Şomoghi, R.; Constantin, M.; Firincă, C.; et al. Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates. Coatings 2022, 12, 242. https://doi.org/10.3390/coatings12020242
Purcar V, Rădiţoiu V, Raduly FM, Rădițoiu A, Anastasescu M, Popa M, Căprărescu S, Şomoghi R, Constantin M, Firincă C, et al. Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates. Coatings. 2022; 12(2):242. https://doi.org/10.3390/coatings12020242
Chicago/Turabian StylePurcar, Violeta, Valentin Rădiţoiu, Florentina Monica Raduly, Alina Rădițoiu, Mihai Anastasescu, Monica Popa, Simona Căprărescu, Raluca Şomoghi, Mariana Constantin, Cristina Firincă, and et al. 2022. "Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates" Coatings 12, no. 2: 242. https://doi.org/10.3390/coatings12020242
APA StylePurcar, V., Rădiţoiu, V., Raduly, F. M., Rădițoiu, A., Anastasescu, M., Popa, M., Căprărescu, S., Şomoghi, R., Constantin, M., Firincă, C., & Ispas, G. C. (2022). Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates. Coatings, 12(2), 242. https://doi.org/10.3390/coatings12020242