Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method
Abstract
:1. Introduction
- Cubic boron nitride(c-BN): only diamond is harder than C-BN, the second-hardest substance known to man. It has qualities including exceptional wear resistance, high thermal conductivity, and chemical inertness. Due to these properties, it has been used in various coatings and machine tools [28].
- Hex boron nitride(h-BN) has excellent lubricating properties due to solid covalent connections holding boron and nitrogen atoms together within each layer. In contrast, weak van der Waals forces hold the layers together. Paints, cosmetics, pencil lead, dental cement, and insulators in the high-temperature furnace are all lubricated with boron nitride in its hexagonal form.
2. Materials and Characterization Methods
2.1. Making of Pins of EN31 (Material Equivalent of SAE52100)
2.2. Nanoparticles Procurement
2.3. Vacuum Heat Treatment Process
The Flow of the Vacuum Heat Treatment Process
2.4. Taguchi Method
2.5. The Scanning Electron Microscope (SEM) and EDS Analysis
2.6. The Friction and Wear Testing
2.7. X-ray Diffraction (XRD)
3. Results and Discussion
3.1. Taguchi Method-L27 Orthogonal Array Analysis
3.2. Analysis of Signal-to-Noise Ratio
3.3. Analysis of Variance
3.4. Samples for SEM and EDX Analysis
3.5. Friction and Wear Analysis
3.6. XRD Analysis
4. Conclusions
- (1)
- The optimal process parameters were confirmed as a c-BN percentage of 0%, a h-BN percentage of 100%, and temperature of the vacuum treatment as 1200 °C.
- (2)
- The most influential parameter on surface microhardness is the h-BN weight percentage.
- (3)
- The microhardness of surface treated pins reduces from surface to material (viz. 782-720 HV0.1 (25 µm) reduces to 464-401 HV0.1 (middle of the hook)). As the temperature of the vacuum treatment increases, it increases the microhardness.
- (4)
- The wear and friction tribological properties also show better performance after the modification of the surface layer by CBN and hBN nanoparticle impregnation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HV | Vickers’s Hardness |
EN | Electrically Normalized processed through EDM |
c-BN | Cubic Boron Nitride |
h-BN | Hex Boron Nitride |
S/N ratio | Signal-to-Noise Ratio |
DOE | Design of Experiments |
SEM | Scanning Electron Microscope |
IISER | Indian Institute of Science Education and Research |
EDS | Energy Dispersive X-ray Spectroscopy |
DOE | Design of Experiments |
SAE | Society of Automotive Engineers |
DLC | Diamond-like Coatings |
CARS | Compressive Residual Stress |
RCF | Rolling Contact Fatigue |
ANNOVA | Analysis of Variance |
XRD | X-ray Diffraction |
References
- Sadeghi, F.; Jalalahmadi, B.; Slack, T.S.; Raje, N.; Arakere, N.K. A Review of Rolling Contact Fatigue. J. Tribol. 2009, 131, 041403. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Kumaraswamidhas, L.A. Bearing Failure Issues and Corrective Measures through Surface Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Chikalthankar, S.B.; Nandedkar, V.M.; Jawale, P.V. Comparative Study of Bearing Materials and Failure of Plain Bearings. Int. J. Eng. Res. Technol. 2014, 3, 2402–2406. [Google Scholar]
- Espejel, G.E.M.; Gabelli, A. A model for rolling bearing life with surface and subsurface survival: Sporadic surface damage from deterministic indentations. Tribol. Int. 2016, 96, 279–288. [Google Scholar] [CrossRef]
- Ooki, C. Improving rolling contact fatigue life of bearing steels through grain refinement. SAE Tech. Pap. 2004, 2018. [Google Scholar] [CrossRef]
- Fundamental, S. Encyclopedia of Tribology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Coors, T.; Hwang, J.I.; Pape, F.; Poll, G. Theoretical investigations on the fatigue behavior of a tailored forming steel-aluminium bearing component. AIP Conf. Proc. 2019, 2113, 040020. [Google Scholar] [CrossRef]
- Bhalerao, V.Y.; Lakade, S.S. Comprehensive review on improvement in surface properties of bearing steel. Mater. Today Proc. 2022, 55, 441–446. [Google Scholar] [CrossRef]
- Anusha, E.; Kumar, A.; Shariff, S.M. A novel method of laser surface hardening treatment inducing different thermal processing condition for Thin-sectioned 100Cr6 steel. Opt. Laser Technol. 2020, 125, 106061. [Google Scholar] [CrossRef]
- Li, W.; Sakai, T.; Li, Q.; Lu, L.T.; Wang, P. Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel. Int. J. Fatigue 2010, 32, 1096–1107. [Google Scholar] [CrossRef]
- Nam, T.H.; Yoon, D.J.; Jin, J.K.; Jeong, B.J.; Song, B.H.; Park, C.N. The Influence of Heat Treatment Process and Alloy on Microstructure and Rolling Contact Fatigue Life of High Carbon Chromium Bearing Steels; S. A. E. Technical and P. Series, No. 724; SAE Technical: Warrendale, PA, USA, 2018. [Google Scholar]
- Dearnley, P.A.; Neville, A.; Turner, S.; Scheibe, H.-J.; Tietema, R.; Tap, R.; Stüber, M.; Hovsepian, P.; Layyous, A.; Stenbom, B. Coatings tribology drivers for high density plasma technologies. Surf. Eng. 2010, 26, 80–96. [Google Scholar] [CrossRef]
- Vetter, J. Surface Treatments for Automotive Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kovacı, H.; Bozkurt, Y.B.; Yetim, A.F.; Baran, Ç.A. Corrosion and tribocorrosion properties of duplex surface treatments consisting of plasma nitriding and DLC coating. Tribol. Int. 2020, 156, 106823. [Google Scholar] [CrossRef]
- Spear, J.C.; Ewers, B.W.; Batteas, J.D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 2015, 10, 301–314. [Google Scholar] [CrossRef]
- ABorgaonkar, A.; Syed, I. Friction and wear behaviour of composite MoS2–TiO2 coating material in dry sliding contact. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 51. [Google Scholar] [CrossRef]
- Clavería, I.; Lostalé, A.; Fernández, Á.; Castell, P.; Elduque, D.; Mendoza, G.; Zubizarreta, C. Enhancement of Tribological Behavior of Rolling Bearings by Applying a Multilayer ZrN/ZrCN Coating. Coatings 2019, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Journet, C.; Linas, S.; Garnier, V.; Steyer, P.; Benayoun, S.; Brioude, A.; Toury, B. How to Increase the h-BN Crystallinity of Microfilms and Self-Standing Nanosheets: A Review of the Different Strategies Using the PDCs Route. Crystals 2016, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Sagoff, J. Graphene Layers Dramatically Reduce Wear and Friction on Sliding Steel Surfaces. Available online: https://www.anl.gov/article/graphene-layers-dramatically-reduce-wear-and-friction-on-sliding-steel-surfaces (accessed on 20 May 2020).
- Gutierrez-Noda, L.; Cuao-Moreu, C.A.; Perez-Acosta, O.; Lorenzo-Bonet, E.; Zambrano-Robledo, P.; Hernandez-Rodriguez, M.A.L. The effect of a boride diffusion layer on the tribological properties of AISI M2 steel. Wear 2019, 426-427, 1667–1671. [Google Scholar] [CrossRef]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid lubrication with MOS2: A review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Kuleshov, A.K.; Rusalsky, D.P.; Barkouskay, M.M. Synthesis of Layered Coatings From Solid Solutions of Niobium, Zirconium and Titanium Carbides on Hard Alloy Tool Using Vacuum Arc Deposition; Belarusian State University: Minsk, Belarus, 2021; pp. 21–24. [Google Scholar]
- Huang, Z.; Zhao, W.; Zhao, W.; Ci, X.; Li, W. Tribological and anti-corrosion performance of epoxy resin composite coatings reinforced with differently sized cubic boron nitride (CBN) particles. Friction 2020, 9, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Habibolahzadeh, A.; Haftlang, F. Duplex Surface Treatment of AISI 1045 Steel Via Pack Boriding and Plasma Nitriding: Characterization and Tribological Studies. J. Tribol. 2017, 140, 021602. [Google Scholar] [CrossRef]
- Liu, F.; Yi, M.; Ran, L.; Ge, Y.; Peng, K. Influence of preparation method on microstructure and tribological behavior of C/C-BN composites. Ceram. Int. 2021, 47, 12879–12896. [Google Scholar] [CrossRef]
- Trehan, R.; Lifshitz, Y.; Rabalais, J.W. Auger and x-ray electron spectroscopy studies of hBN, cBN, and N+2 ion irradiation of boron and boron nitride. J. Vac. Sci. Technol. A Vac. Surf. Film. 1990, 8, 4026–4032. [Google Scholar] [CrossRef]
- Agyapong, J.; Czekanski, A.; Boakye-Yiadom, S. Effect of heat treatment on microstructural evolution and properties of cemented carbides (WC-17Co) reinforced with 3% volume hexagonal-boron nitride (h-BN) and processed by selective laser sintering (SLS). Mater. Charact. 2021, 174, 110968. [Google Scholar] [CrossRef]
- Borgaonkar, A.V.; Syed, I. Effect of coatings on rolling contact fatigue and tribological parameters of rolling/sliding contacts under dry/lubricated conditions: A review. Sadhana—Acad. Proc. Eng. Sci. 2020, 45, 30. [Google Scholar] [CrossRef]
- Hoffmann, G.; Jandeska, W. Effects on rolling contact fatigue performance—Part II. Gear Technol. 2007, 24, 42–51. [Google Scholar]
- Bewilogua, K.; Bräuer, G.; Dietz, A.; Gäbler, J.; Goch, G.; Karpuschewski, B.; Szyszka, B. Surface technology for automotive engineering. CIRP Ann.—Manuf. Technol. 2009, 58, 608–627. [Google Scholar] [CrossRef]
- Yan, L.; Wang, H.; Wang, C.; Sun, L.; Liu, D.; Zhu, Y. Friction and wear properties of aligned carbon nanotubes reinforced epoxy composites under water lubricated condition. Wear 2013, 308, 105–112. [Google Scholar] [CrossRef]
- Borgaonkar, A.; Syed, I. Tribological Investigation of Composite MoS2-TiO2-ZrO2 Coating Material by Response Surface Methodology Approach. J. Tribol. 2022, 144, 031401. [Google Scholar] [CrossRef]
- Bhalerao, V.Y.; Lakade, S.S. Effect of Boron Nanoparticle Impregnation Using Plasma Nitriding on Hardness and Surface Roughness of SAE52100 Steel. Int. J. Mech. Prod. Eng. 2022, 10, 50–54. [Google Scholar]
- Kumar, R.; Alphonsa, J.; Prakash, R.; Boob, K.S.; Ghanshyam, J.; A Rayjada, P.; Raole, P.M.; Mukherjee, S. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer. Bull. Mater. Sci. 2011, 34, 153–159. [Google Scholar] [CrossRef]
- Nie, H.W.; Nie, J.H. Research and prospects of vacuum heat treatment technology. In Proceedings of the 2013 Fourth International Conference on Digital Manufacturing & Automation, ICDMA 2013, Shinan, China, 29–30 June 2013; pp. 1011–1014. [Google Scholar] [CrossRef]
- SECO Warwick. Heat Treating Data Book; SECO Warwick: Świebodzin, Poland, 2011; Volume 1, pp. 1–115. [Google Scholar]
- Cao, Z.; Liu, T.; Yu, F.; Cao, W.; Zhang, X.; Weng, Y. Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel. Int. J. Fatigue 2019, 131, 105351. [Google Scholar] [CrossRef]
- Terminello, L.J. Morphology and bonding measured from boron-nitride powders and films using near-edge X-ray absorption fine structure. J. Vac. Sci. Technol. A Vac. Surf. Film. 1994, 12, 2462–2466. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Yu, H.; Luo, Z.-A.; Xie, G.-M.; Misra, R. The Impact of Surface Treatment and Degree of Vacuum on the Interface and Mechanical Properties of Stainless Steel Clad Plate. Materials 2018, 11, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiubianu, G.-T.; Bele, A.; Grigoras, M.; Tugui, C.; Ciubotaru, B.-I.; Zaltariov, M.-F.; Borza, F.; Bujoreanu, L.-G.; Cazacu, M. Scalable Silicone Composites for Thermal Management in Flexible Stretchable Electronics. Batteries 2022, 8, 95. [Google Scholar] [CrossRef]
- Sen, S.; Sen, U.; Bindal, C. Tribological properties of oxidised boride coatings grown on AISI 4140 steel. Mater. Lett. 2006, 60, 3481–3486. [Google Scholar] [CrossRef]
- Ulutan, M.; Yildirim, M.M.; Çelik, O.N.; Buytoz, S. Tribological Properties of Borided AISI 4140 Steel with the Powder Pack-Boriding Method. Tribol. Lett. 2010, 38, 231–239. [Google Scholar] [CrossRef]
- Alsaran, A.; Çelik, A.; Çelik, C. Determination of the optimum conditions for ion nitriding of AISI 5140 steel. Surf. Coatings Technol. 2002, 160, 219–226. [Google Scholar] [CrossRef]
- Poria, S.; Sutradhar, G.; Sahoo, P. Design of experiments analysis of abrasive wear behavior of stir cast Al-TiB2 composites. Mater. Today Proc. 2019, 18, 4253–4260. [Google Scholar] [CrossRef]
- Chouhan, M.; Thakur, L.; Sindhu, D.; Patel, M.K. An investigation on the optimization of anti-wear performance of nano-Fe3O4 based ferro-magnetic lubricant. J. Tribol. 2020, 25, 119–135. [Google Scholar]
- Diwate, A.D.; Thakre, S.B. Study of Tribological analysis of PTFE and its filler using Taguchi Approach. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 012079. [Google Scholar] [CrossRef]
- Kramm, U.I.; Zana, A.; Vosch, T.; Fiechter, S.; Arenz, M.; Schmeißer, D. Supplementary Material. 2015, pp. 1–13. Available online: https://www.researchgate.net/publication/298771311_Supplementary_Material (accessed on 20 May 2020).
- Mendoza, C.V.; Mendoza, J.R.; Galván, V.I.; Hodgkins, R.; Valdivieso, A.L.; Palacios, L.S.; Leal-Cruz, A.L.; Junquera, V.I. Effect of substrate roughness, time and temperature on the processing of iron boride coatings: Experimental and statistical approaches. Int. J. Surf. Sci. Eng. 2014, 8, 71–91. [Google Scholar] [CrossRef]
- Günen, A.; Kanca, E. Characterization of borided Inconel 625 alloy with different boron chemicals. Pamukkale Univ. J. Eng. Sci. 2017, 23, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Palaniradja, K.; Alagumurthi, N.; Soundararajan, V. Hardness and case depth analysis through optimization techniques in surface hardening processes. Open Mater. Sci. J. 1874, 4, 38–63. [Google Scholar] [CrossRef] [Green Version]
- Jaiganesh, V.; Srinivasan, D.; Sevvel, P. Optimization of process parameters on friction stir welding of 2014 aluminum alloy plates. Int. J. Eng. Technol. 2017, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Borgaonkar, A.V.; Ismail, S. Tribological behavior prediction of composite MoS2-TiO2 coating using Taguchi coupled artificial neural network approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 1–16. [Google Scholar] [CrossRef]
- Shakeri, Z.; Benfriha, K.; Shirinbayan, M.; Ahmadifar, M.; Tcharkhtchi, A. Mathematical modeling and optimization of fused filament fabrication (Fff) process parameters for shape deviation control of polyamide 6 using taguchi method. Polymers 2021, 13, 3697. [Google Scholar] [CrossRef]
- Dalcin, R.L.; Rocha, A.D.S.; de Castro, V.V.; Oliveira, L.F.; das Neves, J.C.K.; da Silva, C.H.; Malfatti, C.D.F. Influence of plasma nitriding with a nitrogen rich gas composition on the reciprocating sliding wear of a DIN 18MnCrSiMo6-4 steel. Mater. Res. 2021, 24, 20200592. [Google Scholar] [CrossRef]
- ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 2017; Volume 5, pp. 1–6. [CrossRef]
- Kurt, B.L.; Özdoğan, B.; Güney, Ö.; Bölükbaşı, S.; Günen, A. Characterization and Wear Behavior of TiBC Coatings Formed by Thermo-Reactive Diffusion Technique on AISI D6 Steel; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 385. [Google Scholar]
Sr. No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Parameter | C | Si | P | S | Cr | MN |
Result | 0.97 | 0.31 | 0.039 | 0.048 | 1.21 | 0.39 |
Case Depth Hardness in HV0.1 | |||||||
---|---|---|---|---|---|---|---|
HV0.1 (50 µm) | HV0.1 (100 µm) | HV0.1 (150 µm) | |||||
Plain Pin (without treatment) | 321 | 296 | 265 |
Sr. No. | Process | Temp | Time |
---|---|---|---|
1 | The process of vacuum heat treatment starts | 25 °C | |
2 | Pre-heat | 650 °C | 1 h |
3 | Soaking time | 650 °C | 1–1.5 h |
4 | Temperature increase-Heating | 850 °C | 20 min |
5 | Soaking time | 850 °C | 1–1.5 h |
6 | Temperature increase-Heating | 1050 °C | 20 min |
7 | Soaking time | 1050 °C | 1–1.5 h |
8 | Temperature increase-Heating | 1200 °C | 20 min |
9 | Soaking time | 1200 °C | 1–1.5 h |
10 | Overall Cooling time | 30 min | |
Total time | Approx 8–10 h |
Parameter | Level 1 | Level 2 | Level 3 |
---|---|---|---|
c-BN (weight %) | 0 | 20 | 50 |
h-BN (weight %) | 50 | 80 | 100 |
Temp (°C) | 960 | 1040 | 1200 |
L27 Array Analysis before Testing of Vacuum Heat Treatment | Microhardness Testing after Vacuum Heat Treatment (Response) | |||||||
---|---|---|---|---|---|---|---|---|
Sr. No. | cBN (wt%) | hBN (wt%) | Temp (°C) | Symbol | HV0.1 (25 µm) | HV0.1 (50 µm) | HV0.1 (100 µm) | HV0.1 (150 µm) |
1 | 0 | 50 | 960 | C1 | 446 | 455 | 459 | 446 |
2 | 0 | 50 | 960 | C2 | 525 | 478 | 468 | 425 |
3 | 0 | 50 | 960 | C3 | 413 | 441 | 417 | 468 |
4 | 0 | 80 | 1040 | B1 | 421 | 398 | 390 | 370 |
5 | 0 | 80 | 1040 | B2 | 383 | 380 | 373 | 366 |
6 | 0 | 80 | 1040 | B3 | 450 | 425 | 421 | 417 |
7 | 0 | 100 | 1200 | A7 | 780 | 766 | 740 | 725 |
8 | 0 | 100 | 1200 | A8 | 782 | 761 | 735 | 720 |
9 | 0 | 100 | 1200 | A9 | 776 | 760 | 734 | 722 |
10 | 20 | 50 | 1040 | B4 | 348 | 327 | 309 | 312 |
11 | 20 | 50 | 1040 | B5 | 464 | 425 | 446 | 413 |
12 | 20 | 50 | 1040 | B6 | 413 | 390 | 425 | 441 |
13 | 20 | 80 | 1200 | A1 | 750 | 742 | 660 | 605 |
14 | 20 | 80 | 1200 | A3 | 748 | 739 | 664 | 609 |
15 | 20 | 80 | 1200 | A5 | 381 | 360 | 347 | 379 |
16 | 20 | 100 | 960 | C4 | 446 | 401 | 417 | 464 |
17 | 20 | 100 | 960 | C5 | 439 | 429 | 398 | 437 |
18 | 20 | 100 | 960 | C6 | 627 | 667 | 615 | 649 |
19 | 50 | 50 | 1200 | A2 | 748 | 739 | 664 | 609 |
20 | 50 | 50 | 1200 | A4 | 313 | 343 | 323 | 343 |
21 | 50 | 50 | 1200 | A6 | 286 | 356 | 349 | 325 |
22 | 50 | 80 | 960 | C7 | 455 | 464 | 450 | 413 |
23 | 50 | 80 | 960 | C8 | 405 | 363 | 380 | 383 |
24 | 50 | 80 | 960 | C9 | 762 | 698 | 566 | 673 |
25 | 50 | 100 | 1040 | B7 | 421 | 433 | 387 | 409 |
26 | 50 | 100 | 1040 | B8 | 681 | 579 | 649 | 606 |
27 | 50 | 100 | 1040 | B9 | 376 | 366 | 380 | 363 |
c-BN | h-BN | Temp | HV0.1 (at 50 µm) | SNRA10 | STDE10 | MEAN10 |
---|---|---|---|---|---|---|
0 | 50 | 960 | 446 | 52.0378 | 58.141 | 408.333 |
0 | 50 | 960 | 525 | 52.0378 | 58.141 | 408.333 |
0 | 50 | 960 | 413 | 52.0378 | 58.141 | 408.333 |
0 | 80 | 1040 | 421 | 54.5784 | 212.467 | 626.333 |
0 | 80 | 1040 | 383 | 54.5784 | 212.467 | 626.333 |
0 | 80 | 1040 | 425 | 54.5784 | 212.467 | 626.333 |
0 | 100 | 1200 | 780 | 53.7128 | 106.579 | 504.000 |
0 | 100 | 1200 | 782 | 53.7128 | 106.579 | 504.000 |
0 | 100 | 1200 | 776 | 53.7128 | 106.579 | 504.000 |
20 | 50 | 1040 | 348 | 50.9294 | 259.293 | 449.000 |
20 | 50 | 1040 | 464 | 50.9294 | 259.293 | 449.000 |
20 | 50 | 1040 | 413 | 50.9294 | 259.293 | 449.000 |
20 | 80 | 1200 | 750 | 53.7506 | 193.304 | 540.667 |
20 | 80 | 1200 | 748 | 53.7506 | 193.304 | 540.667 |
20 | 80 | 1200 | 381 | 53.7506 | 193.304 | 540.667 |
20 | 100 | 960 | 446 | 53.0476 | 164.646 | 492.667 |
20 | 100 | 960 | 439 | 53.0476 | 164.646 | 492.667 |
20 | 100 | 960 | 627 | 53.0476 | 164.646 | 492.667 |
50 | 50 | 1200 | 748 | 52.0378 | 58.141 | 408.333 |
50 | 50 | 1200 | 313 | 52.0378 | 58.141 | 408.333 |
50 | 50 | 1200 | 286 | 52.0378 | 58.141 | 408.333 |
50 | 80 | 960 | 455 | 54.5784 | 212.467 | 626.333 |
50 | 80 | 960 | 405 | 54.5784 | 212.467 | 626.333 |
50 | 80 | 960 | 762 | 54.5784 | 212.467 | 626.333 |
50 | 100 | 1040 | 421 | 53.7128 | 106.579 | 504.000 |
50 | 100 | 1040 | 681 | 53.7128 | 106.579 | 504.000 |
50 | 100 | 1040 | 376 | 53.7128 | 106.579 | 504.000 |
Level | cBN | hBN | Temp |
---|---|---|---|
1 | 54.40 | 52.04 | 53.54 |
2 | 53.44 | 53.52 | 52.43 |
3 | 52.58 | 54.86 | 54.45 |
Delta | 1.83 | 2.83 | 2.01 |
Rank | 3 | 1 | 2 |
Element | Weight% | Atomic% |
---|---|---|
B K | 21.09 | 46.99 |
C K | 8.44 | 16.92 |
N K | 4.41 | 7.58 |
Cr K | 0.75 | 0.35 |
Fe K | 65.31 | 28.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhalerao, V.Y.; Lakade, S.S. Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method. Coatings 2022, 12, 1940. https://doi.org/10.3390/coatings12121940
Bhalerao VY, Lakade SS. Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method. Coatings. 2022; 12(12):1940. https://doi.org/10.3390/coatings12121940
Chicago/Turabian StyleBhalerao, Vrushali Yogesh, and Sanjay Shridhar Lakade. 2022. "Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method" Coatings 12, no. 12: 1940. https://doi.org/10.3390/coatings12121940
APA StyleBhalerao, V. Y., & Lakade, S. S. (2022). Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method. Coatings, 12(12), 1940. https://doi.org/10.3390/coatings12121940