Biomechanical Behavior of Different Miniplate Designs for Skeletal Anchorage in the Anterior Open Bite Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration of the Model
2.2. Pre-Processing
3. Results
4. Discussion
5. Conclusions
- Within the methodological limitations of the present study, orthodontic miniplates for the treatment of AOB appear to be an effective, safe, and less invasive alternative;
- After the individualization following the maxilla surface anatomy, the Y-plate showed the best performance since its application generated less stress in bone tissue and its shape was associated with less displacement;
- Different simulations featuring various cortical bone thicknesses and different implant geometries are needed to better understand the biomechanics of each type of miniplate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, R.R.; Pedrin, R.R.A.; Almeida, M.R.; Ferreira, F.P.C.; Pinzan, A. Dispasias vesrticais: Mordida aberta anterior- Tratamento e estabilidade. R Dent. Press Ortodon. Ortop Facial. 2003, 8, 91–119. [Google Scholar]
- Leung, M.T.; Lee, T.C.; Rabie, A.B.; Wong, R.W. Use of miniscrews and miniplates in orthodontics. J. Oral. Maxillofac Surg. 2008, 66, 1461–1466. [Google Scholar] [CrossRef]
- Sakima, M.T.; Mendonça, A.A.; Ocanha-Júnior, J.M.; Sakima, T. Sistema de Apoio Ósseo para Mecânica Ortodôntica (SAO®)—miniplacas para ancoragem ortodôntica. Parte I: Tratamento da mordida aberta. Rev. Dent. Press. 2009, 14, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Largura, L.Z.; Argenta, M.A.; Sakima, M.T.; Camargo, E.S.; Guariza-Filho, O.; Tanaka, O.M. Bone stress and strain after use of a miniplate for molar protraction and uprighting: A 3-dimensional finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 198–206. [Google Scholar] [CrossRef]
- Farret, M.M.; Farret, M.M.; Farret, A.M. Orthodontic camouflage of skeletal Class III malocclusion with miniplate: A case report. Dent. Press J. Orthod. 2016, 21, 89–98. [Google Scholar] [CrossRef]
- Umemori, M.; Sugawara, J.; Mitani, H.; Nagasaka, H.; Kawamura, H. Skeletal anchorage system for open-bite correction. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 166–174. [Google Scholar] [CrossRef]
- Lee, H.; Ting, K.; Nelson, M.; Sun, N.; Sung, S.J. Maxillary expansion in customized finite element method models. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 367–374. [Google Scholar] [CrossRef]
- Faber, J.; Morum, T.F.A.; Leal, S.; Berto, P.M.; Carvalho, C.K.S. Miniplacas permitem tratamento eficiente e eficaz da mordida aberta anterior. R Dent. Press Ortodon. Ortop Facial. 2008, 1, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Lotti, R.S.; Machado, A.W.; Mazzieiro, E.T.; Landre-Júnior, J. Aplicabilidade científica do método dos elementos finitos. R Dent. Press Ortodon. Ortop Facial. 2006, 11, 35–43. [Google Scholar] [CrossRef]
- Lee, H.; Nguyen, A.; Hong, C.; Hoang, P.; Pham, J.; Ting, K. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis. Am. J. Orthod Dentofacial Orthop. 2016, 150, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Souza, R.O.A.E.; Borges, A.L.S. Influence of Alveolar Bone Loss and Cement Layer Thickness on the Biomechanical Behavior of Endodontically Treated Maxillary Incisors: A 3-dimensional Finite Element Analysis. J. Endod. 2017, 43, 791–795. [Google Scholar] [CrossRef]
- Möhlhenrich, S.C.; Jäger, F.; Jäger, A.; Schumacher, P.; Wolf, M.; Fritz, U.; Bourauel, C. Biomechanical properties of CAD/CAM-individualized nickel-titanium lingual retainers: An in vitro study. J. Orofac. Orthop. 2018, 79, 309–319. [Google Scholar] [CrossRef]
- Conci, R.A.; Tomazi, F.H.; Noritomi, P.Y.; Da Silva, J.V.; Fritscher, G.G.; Heitz, C. Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Fractures Using 3-Dimensional Finite Element Analysis. J. Oral. Maxillofac Surg. 2015, 73, 1321–1327. [Google Scholar] [CrossRef]
- Geramy, A.; Bouserhal, J.; Martin, D.; Baghaeian, P. Bone stress and strain modification in diastema closure: 3D analysis using finite element method. Int. Orthod. 2015, 13, 274–286. [Google Scholar] [CrossRef]
- Matos, J.D.M.; Santos, A.C.M.; Nakano, L.J.N.; De Vasconcelos, J.E.L.; Andrade, V.C.; Nishioka, R.S.; Bottino, M.A.; Lopes, G.R.S. Metal alloys in dentistry: An outdated material or required for oral rehabilitation? Int. J. Odontostomat. 2021, 15, 702–711. [Google Scholar] [CrossRef]
- Osman, R.B.; Elkhadem, A.H.; Ma, S.; Swain, M.V. Titanium versus zirconia implants supporting maxillary overdentures: Three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implants. 2013, 28, e198–e208. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.P.; Cui, F.; Phang, H.Q.; Su, B.; Leo, H.L.; Hon, J.K. Design considerations and quantitative assessment for the development of percutaneous mitral valve stent. Med. Eng. Phys. 2014, 36, 882–888. [Google Scholar] [CrossRef]
- Mo, S.S.; Noh, M.K.; Kim, S.H.; Chung, K.R.; Nelson, G. Finite element study of controlling factors of anterior intrusion and torque during Temporary Skeletal Anchorage Device (TSAD) dependent en masse retraction without posterior appliances: Biocreative hybrid retractor (CH-retractor). Angle Orthod. 2020, 90, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Madfa, A.A.; Kadir, M.R.; Kashani, J.; Saidin, S.; Sulaiman, E.; Marhazlinda, J.; Rahbari, R.; Abdullah, B.J.; Abdullah, H.; Abu Kasim, N.H. Stress distributions in maxillary central incisors restored with various types of post materials and designs. Med. Eng. Phys. 2014, 36, 962–967. [Google Scholar] [CrossRef]
- De Andrade, G.S.; Tribst, J.P.M.; Dal Piva, A.M.d.O.; Bottino, M.A.; Borges, A.L.S.; Valandro, L.F.; Özcan, M. A study on stress distribution to cement layer and root dentin for post and cores made of CAD/CAM materials with different elasticity modulus in the absence of ferrule. J. Clin. Exp. Dent. 2019, 11, e1–e8. [Google Scholar] [CrossRef]
- Ramos, A.L.; Zange, S.E.; Terada, H.H.; Hoshina, F.T. Anchorage miniplates in the treatment of anterior open bite. Rev Dent Press Ortodon. Ortop. Facial. 2008, 13, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.W.; Chang, C.H.; Wong, T.Y.; Liu, J.K. Bone stress when miniplates are used for orthodontic anchorage: Finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 466–472. [Google Scholar] [CrossRef]
- Greenlee, G.M.; Huang, G.J.; Chen, S.S.; Chen, J.; Koepsell, T.; Hujoel, P. Stability of treatment for anterior open-bite malocclusion: A meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 154–169. [Google Scholar] [CrossRef]
- Park, Y.C.; Lee, H.A.; Choi, N.C.; Kim, D.H. Open bite correction by intrusion of posterior teeth with miniscrews. Angle Orthod. 2008, 78, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Cacho, A.; San Roman, F.; Gerós, H.; Afonso, A. Mini implants osseointegration, molar intrusion and root resorption in Sinclair minipigs. Int. Orthod. 2019, 17, 733–743. [Google Scholar] [CrossRef]
- Kitamura, E.; Stegaroiu, R.; Nomura, S. Biomechanical aspects of marginal bone resorption around osseointegrated implants: Considerations based on a three- dimensional finite element analysis. Clin. Oral. Implant. Res. 2004, 15, 401–412. [Google Scholar] [CrossRef]
- Holberg, C.; Steinhäuser, S.; Geis, P.; Rudzki-Janson, I. Cone-beam computed tomography in orthodontics: Benefits and limitations. J. Orofac. Orthop. 2005, 66, 434–444. [Google Scholar] [CrossRef]
- Trabelsi, N.; Yosibash, Z.; Wutte, C.; Augat, P.; Eberle, S. Patient-specific finite element analysis of the human femur—A double-blinded biomechanical validation. J. Biomechanics. 2011, 44, 1666–1672. [Google Scholar] [CrossRef]
- Papavasiliou, G.; Kamposiora, P.; Bayne, S.C.; Felton, D.A. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J. Prosthet Dent. 1996, 76, 633–640. [Google Scholar] [CrossRef]
- Daimaruya, T.; Nagasaka, H.; Umemori, M.; Sugawara, J.; Mitani, H. The influences of molar intrusion on the inferior alveolar neurovascular bundle and root using the skeletal anchorage system in dogs. Angle Orthod. 2001, 71, 60–70. [Google Scholar] [PubMed]
- Çifter, M.; Saraç, M. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e233–e241. [Google Scholar] [CrossRef]
- Nalbantgil, D.; Tozlu, M.; Ozdemir, F.; Oztoprak, M.O.; Arun, T. FEM analysis of a new miniplate: Stress distribution on the plate, screws and the bone. Eur. J. Dent. 2012, 6, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veziroglu, F.; Uckan, S.; Ozden, U.A.; Arman, A. Stability of zygomatic plate-screw orthodontic anchorage system: A finite element analysis. Angle Orthod. 2008, 78, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, A.; Horiuchi, S.; Kinouchi, N.; Izawa, T.; Hiasa, M.; Kawai, N.; Yasue, A.; Hassan, A.H.; Tanaka, E. Skeletal anchorage for intrusion of bimaxillary molars in a patient with skeletal open bite and temporomandibular disorders. J. Orthod Sci. 2017, 6, 152–158. [Google Scholar]
- Assis, D.S.; Xavier, T.A.; Noritomi, P.Y.; Gonçales, E.S. Finite element analysis of bone stress after SARPE. J. Oral. Maxillofac Surg. 2014, 72, 167.e1–167.e7. [Google Scholar] [CrossRef]
- Matos, J.D.M.; Nakano, L.J.N.; Bottino, M.A.; Jesus, R.H.; Maciel, L.C. Current considerations for dental ceramics and their respective union systems. Rev. Bras. Odontol. 2020, 77, 1768. [Google Scholar] [CrossRef]
- Matos, J.D.M.; Lopes, G.D.R.S.; Nakano, L.J.N.; Ramos, N.C.; Vasconcelos, J.E.L.; Bottino, M.A.; Tribst, J.P.M. Biomechanical evaluation of 3-unit fixed partial dentures on monotype and two-piece zirconia dental implants. Comput. Methods Biomech. Biomed. Engin. 2022, 25, 239–246. [Google Scholar] [CrossRef]
- Matos, J.D.M.d.; Lopes, G.d.R.S.; Queiroz, D.A.; Pereira, A.L.J.; Sinhoreti, M.A.C.; Ramos, N.C.; Lino, V.; Oliveira, F.R.; Borges, A.L.S.; Bottino, M.A. Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant. Materials 2022, 15, 8133. [Google Scholar] [CrossRef]
Material | Young Modulus (GPa) | Poisson Ratio |
---|---|---|
Y-TZP [15] | 220 | 0.30 |
Titanium [16] | 110 | 0.30 |
Nitinol [18] | 52 | 0.30 |
Stainless steel [19] | 200 | 0.25 |
Cortical bone [20] | 13.7 | 0.30 |
Cancellous bone [20] | 1.37 | 0.30 |
Oral mucosa [21] | 10 | 0.40 |
Periodontal ligament [21] | 0.0118 | 0.45 |
Number of Nodes | Number of Elements | |
---|---|---|
Plate I | 2.900.228 | 1.923.115 |
Plate Y | 2.847.272 | 1.891.437 |
Plate T | 2.697.198 | 1.788.073 |
Loads | 2 N | 4 N | 6 N | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Miniplates | Displacement (mm) | Region | Maximum Principal Stress (MPa) | Region | Von Mises Stress (MPa) | Region | Displacement (mm) | Region | Maximum Principal Stress (MPa) | Region | Von Mises Stress (MPa) | Region | Displacement (mm) | Region | Maximum Principal Stress (MPa) | Region | Von Mises Stress (MPa) | Region |
I-plate | 0.012 | First hook of the plate | 1.491 | Border of inferior screw | 41.699 | Border of inferior screw and most superior hook | 0.024 | First hook of the plate | 3.079 | Border of inferior screw | 83.397 | Border of inferior screw and most superior hook | 0.036 | First hook of the plate | 4.772 | Border of superior screw | 125.100 | Border of inferior screw and most superior hook |
Y-plate | 0.010 | First hook of the plate | 1.071 | Border of inferior screw | 44.076 | Border of inferior screw and most superior hook | 0.020 | First hook of the plate | 2.719 | Border of inferior screw | 88.152 | Border of inferior screw and Border of inferior screw and most superior hook | 0.030 | First hook of the plate | 3.151 | Border of right screw | 132.230 | Border of inferior screw and most superior hook |
T-plate | 0.036 | First hook of the plate | 3.276 | Border of central screw | 65.346 | Border of central screw and most superior hook | 0.066 | First hook of the plate | 7.270 | Border of central screw | 139.950 | Border of central screw and most superior hook | 0.100 | First hook of the plate | 10.489 | Border of central screw | 193.060 | Border of central screw and most superior hook |
Group | Mean Value ± SD | N | CI | p-Value | |
---|---|---|---|---|---|
Displacement | I-PLATE | 0.024 ± 0.012 | 3 | 0.013 | 0.054 |
T-PLATE | 0.068 ± 0.032 | 3 | 0.036 | ||
Y-PLATE | 0.020 ± 0.099 | 3 | 0.012 | ||
Maximum principal stress | I-PLATE | 3.114 ± 3.07 | 3 | 1.856 | 0.105 |
T-PLATE | 7.01 ± 3.6 | 3 | 4.088 | ||
Y-PLATE | 2.31 ± 1.09 | 3 | 1.241 | ||
Von Mises stress | I-PLATE | 83.4 ± 41.7 | 3 | 47.19 | 0.488 |
T-PLATE | 131.45 ± 63.9 | 3 | 72.39 | ||
Y-PLATE | 88.15 ± 44.08 | 3 | 49.88 |
Title | I-Plate | T-Plate | |
---|---|---|---|
Displacement | T-plate | 0.090 | - |
Y-plate | 0.972 | 0.068 * | |
Maximum principal stress | T-plate | 0.191 | - |
Y-plate | 0.912 | 0.113 | |
Von Mises stress | T-plate | 0.518 | - |
Y-plate | 0.993 | 0.580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ielpo, A.P.M.; de Matos, J.D.M.; Noritomi, P.Y.; da Rocha Scalzer Lopes, G.; Queiroz, D.A.; Borges, A.L.S.; Nascimento, R.D. Biomechanical Behavior of Different Miniplate Designs for Skeletal Anchorage in the Anterior Open Bite Treatment. Coatings 2022, 12, 1898. https://doi.org/10.3390/coatings12121898
Ielpo APM, de Matos JDM, Noritomi PY, da Rocha Scalzer Lopes G, Queiroz DA, Borges ALS, Nascimento RD. Biomechanical Behavior of Different Miniplate Designs for Skeletal Anchorage in the Anterior Open Bite Treatment. Coatings. 2022; 12(12):1898. https://doi.org/10.3390/coatings12121898
Chicago/Turabian StyleIelpo, Ana Paula Macarani, Jefferson David Melo de Matos, Pedro Yoshito Noritomi, Guilherme da Rocha Scalzer Lopes, Daher Antonio Queiroz, Alexandre Luiz Souto Borges, and Rodrigo Dias Nascimento. 2022. "Biomechanical Behavior of Different Miniplate Designs for Skeletal Anchorage in the Anterior Open Bite Treatment" Coatings 12, no. 12: 1898. https://doi.org/10.3390/coatings12121898
APA StyleIelpo, A. P. M., de Matos, J. D. M., Noritomi, P. Y., da Rocha Scalzer Lopes, G., Queiroz, D. A., Borges, A. L. S., & Nascimento, R. D. (2022). Biomechanical Behavior of Different Miniplate Designs for Skeletal Anchorage in the Anterior Open Bite Treatment. Coatings, 12(12), 1898. https://doi.org/10.3390/coatings12121898