Facile Synthesis of Ti/TiN/TiON/TiO2 Composite Particles for Plasmon-Enhanced Solar Photocatalytic Decomposition of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study of Morphology, Elemental, and Structural-Phase Compositions of Microparticles
3.2. Photocatalytic Properties of Ti/TiN/TiON/TiO2 Composite Microparticles
3.2.1. Study of Photocatalytic Properties of Ti/TiN/TiON/TiO2 Composite Microparticles
3.2.2. Photocatalysis Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijayan, K.; Vijayachamundeeswari, S.P. Improving the multifunctional attributes and photocatalytic dye degradation of MB and RhB dye—A comparative scrutiny. Inorg. Chem. Commun. 2022, 144, 109940. [Google Scholar] [CrossRef]
- Orudzhev, F.F.; Alikhanov, N.M.-R.; Ramazanov, S.M.; Sobola, D.S.; Murtazali, R.K.; Ismailov, E.H.; Gasimov, R.D.; Aliev, A.S.; Ţălu, Ş. Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules 2022, 27, 7029. [Google Scholar] [CrossRef] [PubMed]
- Rosario, A.V.; Pereira, E.C. The role of Pt addition on the photocatalytic activity of TiO2 nanoparticles: The limit between doping and metallization. Appl. Catal. B Environ. 2014, 144, 840–845. [Google Scholar] [CrossRef]
- Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity. J. Am. Chem. Soc. 2013, 136, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Duta, A.; Andronic, L.; Enesca, A. The influence of low irradiance and electrolytes on the mineralization efficiency of organic pollutants using the Vis-active photocatalytic tandem CuInS2/TiO2/SnO2. Catal. Today 2018, 300, 18–27. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Yasmeen, S.; Naveed-ur-Rehman, M.; Nadeem, M.S.; Riaz, M.; Iqbal, F. Sunlight-induced photocatalytic degradation of various dyes and bacterial inactivation using CuO–MgO–ZnO nanocomposite. Environ. Sci. Pollut. Res. 2021, 28, 42243–42260. [Google Scholar] [CrossRef]
- Rachna, R.M.; Shanker, U. Enhanced photocatalytic degradation of chrysene by Fe2O3@ZnHCF nanocubes. Chem. Eng. J. 2018, 348, 754–764. [Google Scholar] [CrossRef]
- Rachna, R.M.; Shanker, U. Sunlight active ZnO@FeHCF nanocomposite for the degradation of bisphenol A and nonylphenol. J. Environ. Chem. Eng. 2019, 7, 103153–1031667. [Google Scholar] [CrossRef]
- Rachna, R.M.; Shanker, U. Sunlight assisted degradation of toxic phenols by zinc oxide doped prussian blue nanocomposite. J. Environ. Chem. Eng. 2020, 8, 104040–104052. [Google Scholar] [CrossRef]
- Vasilchenko, D.; Zhurenok, A.; Saraev, A.; Gerasimov, E.; Kozlova, E. Highly efficient hydrogen production under visible light over g-C3N4-based photocatalysts with low platinum content. Chem. Eng. J. 2022, 445, 136721. [Google Scholar] [CrossRef]
- Topchiyan, P.; Vasilchenko, D.; Tkachev, S. Highly. Active Visible Light-Promoted Ir/g-C3N4 Photocatalysts for the Water Oxidation Reaction Prepared from a Halogen-Free Iridium Precursor. ACS Appl. Mater. Interfaces 2022, 14, 35600–35612. [Google Scholar] [CrossRef] [PubMed]
- Chebanenko, M.I.; Lebedev, L.A.; Ugolkov, V.L.; Prasolov, N.D.; Nevedomskiy, V.N.; Popkov, V.I. Chemical and structural changes of g-C3N4 through oxidative physical vapor deposition. Appl. Surf. Sci. 2022, 600, 154079. [Google Scholar] [CrossRef]
- Fukina, D.G.; Suleimanov, E.V.; Boryakov, A.V.; Zubkov, S.Y.; Koryagin, A.V.; Volkova, N.S.; Gorshkov, A.P. Structure analysis and electronic properties of ATe4+0.5Te6+1.5-xM6+xO6 (A=Rb, Cs, M6+=Mo, W) solid solutions with β-pyrochlore structure. J. Solid State Chem. 2021, 293, 121787. [Google Scholar] [CrossRef]
- Sutar, R.S.; Barkul, R.P.; Delekar, S.D.; Patil, M.K. Sunlight Assisted Photocatalytic Degradation of Organic Pollutants Using g-C3N4-TiO2 Nanocomposites. Arab. J. Chem. 2020, 13, 4966. [Google Scholar] [CrossRef]
- Li, C.; Yang, W.; Liu, L.; Sun, W.; Li, Q. In situ growth of TiO2 on TiN nanoparticles for non-noble-metal plasmonic photocatalysis. RSC Adv. 2016, 6, 72659–72669. [Google Scholar] [CrossRef]
- Naik, G.V.; Schroeder, J.L.; Ni, X.; Kildishev, A.V.; Sands, T.D.; Boltasseva, A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2, 478. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Chen, T.P.; Li, X.D.; Liu, Y.C.; Liu, Y.; Yang, H.Y. Investigation of localized surface plasmon resonance of TiN nanoparticles in TiNxOy thin films. Opt. Mater. Express 2016, 6, 2422. [Google Scholar] [CrossRef]
- Xu, X.; Dutta, A.; Khurgin, J.; Wei, A.; Shalaev, V.M.; Boltasseva, A. TiN@TiO2 Core–Shell Nanoparticles as Plasmon--Enhanced Photosensitizers: The Role of Hot Electron Injection. Laser Photonics Rev. 2020, 14, 1900376. [Google Scholar] [CrossRef]
- Vacková, T.; Špatenka, P.; Balakrishna, S. Plasma Treatment of Powders and Fibers. Non-Therm. Plasma Technol. Polym. Mater. 2019, 193–210. [Google Scholar] [CrossRef]
- Isakaev, E.K.; Sinkevich, O.A.; Tyuftyaev, A.S.; Chinnov, V.F. Investigation of low-temperature plasma generator with divergent channel of the output electrode and some applications of this generator. High Temp. 2010, 48, 97–125. [Google Scholar] [CrossRef]
- Dombrovskii, L.A.; Isakaev, E.H.; Senchenko, V.N.; Chinnov, V.F.; Scherbakov, V.V. Efficiency of particle acceleration, heating, and melting in high-enthalpy plasma jets. High Temp. 2012, 50, 145–153. [Google Scholar] [CrossRef]
- Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 2017, 7, 8783. [Google Scholar] [CrossRef] [PubMed]
- Franck, M.; Jean-Pierre, C.; Roos, J.R. Microprobe Raman spectroscopy of TiN coatings oxidized by solar beam heat treatment. J. Mater. Res. 1995, 10, 119–125. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Isaev, A.; Wang, C.; Magomedova, A.; Kadiev, M.; Kaviyarasu, K. Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties. Nanomaterials 2020, 10, 2183. [Google Scholar] [CrossRef] [PubMed]
- Milošev, I.; Strehblow, H.-H.; Navinšek, B.; Panjan, P. Titanium Nitride by XPS. Surf. Sci. Spectra 1998, 5, 145–151. [Google Scholar] [CrossRef]
- Su, T.-Y.; Huang, C.-H.; Shih, Y.-C.; Wang, T.-H.; Medina, H.; Huang, J.-S.; Chueh, Y.-L. Tunable defect engineering in TiON thin films by multi-step sputtering processes: From a Schottky diode to resistive switching memory. J. Mater. Chem. C 2017, 5, 6319–6327. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Q.; Lv, L.; Wang, Y.; Hu, Y.; Deng, Z.; Teng, F. Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solarcells. RSC Adv. 2017, 7, 20084–20092. [Google Scholar] [CrossRef] [Green Version]
- Kainz, C.; Schalk, N.; Saringer, C.; Czettl, C. In-situ investigation of the oxidation behavior of powdered TiN, Ti(C,N) and TiC coatings grown by chemical vapor deposition. Surf. Coat. Technol. 2020, 406, 126633. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study. J. Appl. Phys. 1992, 72, 3072–3079. [Google Scholar] [CrossRef]
- Wen, P.; Zhang, Y.; Xu, G.; Ma, D.; Qiu, P.; Zhao, X. Ti3+ self-doped TiO2 as a photocatalyst for cyclohexane oxidation under visible light irradiation. J. Mater. 2019, 5, 696–701. [Google Scholar] [CrossRef]
- Vijay, M.; Ananthapadmanabhan, P.V.; Sreekumar, K.P. Evolution of photo-catalytic properties of reactive plasma processed nano-crystalline titanium dioxide powder. Appl. Surf. Sci. 2009, 255, 9316–9322. [Google Scholar] [CrossRef]
- Xing, M.; Zhang, J.; Chen, F.; Tian, B. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem. Commun. 2011, 47, 4947. [Google Scholar] [CrossRef] [PubMed]
- Agyeman, D.A.; Song, K.; Kang, S.H.; Jo, M.R.; Cho, E.; Kang, Y.-M. An improved catalytic effect of nitrogen-doped TiO2 nanofibers for rechargeable Li–O2 batteries; the role of oxidation states and vacancies on the surface. J. Mater. Chem. A 2015, 3, 22557–22563. [Google Scholar] [CrossRef]
- Peng, F.; Cai, L.; Huang, L.; Yu, H.; Wang, H. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. J. Phys. Chem. Solids 2008, 69, 1657–1664. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P.; Gopinath, C.S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2Nanocatalyst. Chem. Mater. 2005, 17, 6349–6353. [Google Scholar] [CrossRef]
- Achour, A.; Porto, R.L.; Soussou, M.-A.; Islam, M.; Boujtita, M.; Aissa, K.A.; Brousse, T. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. J. Power Sources 2015, 300, 525–532. [Google Scholar] [CrossRef]
- Logothetidis, S.; Meletis, E.I.; Stergioudis, G.; Adjaottor, A.A. Room temperature oxidation behavior of TiN thin films. Thin Solid Films 1999, 338, 304–313. [Google Scholar] [CrossRef]
- Odling, G.; Robertson, N. Why is Anatase a Better Photocatalyst than Rutile? The Importance of Free Hydroxyl Radicals. ChemSusChem 2015, 8, 1838–1840. [Google Scholar] [CrossRef]
- Shieh, D.-L.; Lin, Y.-S.; Yeh, J.-H.; Chen, S.-C.; Lin, B.-C.; Lin, J.-L. N-doped, porous TiO2 with rutile phase and visible light sensitive photocatalytic activity. Chem. Commun. 2012, 48, 2528. [Google Scholar] [CrossRef]
- Sachs, M.; Pastor, E.; Kafizas, A.; Durrant, J.R. Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO2. J. Phys. Chem. Lett. 2016, 7, 3742–3746. [Google Scholar] [CrossRef]
- Schneider, J.; Bahnemann, D.W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. [Google Scholar] [CrossRef]
- Xiong, G.; Shao, R.; Droubay, T.C.; Joly, A.G.; Beck, K.M.; Chambers, S.A.; Hess, W.P. Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystals. Adv. Funct. Mater 2007, 17, 2133–2138. [Google Scholar] [CrossRef]
- Kale, M.J.; Avanesian, T.; Christopher, P. Direct Photocatalysis by Plasmonic Nanostructures. ACS Catal. 2013, 4, 116–128. [Google Scholar] [CrossRef]
- Marques, J.; Gomes, T.D.; Forte, M.A.; Silva, R.F.; Tavares, C.J. A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor. Catal. Today 2019, 326, 36–45. [Google Scholar] [CrossRef]
- Kassahun, S.K.; Kiflie, Z.; Shin, D.W.; Park, S.S. Photocatalytic Decolorization of Methylene Blue by N-doped TiO2 Nanoparticles Prepared Under Different Synthesis Parameters. J. Water Environ. Nanotechnol. 2017, 2, 136–144. [Google Scholar] [CrossRef]
Binding Energies, eV | Ti 2p1/2-464.2 Ti 2p3/2-458.6 | Ti 2p1/2-461.2 Ti 2p3/2-454.9 | Ti 2p1/2-462.4 Ti 2p3/2-456.6 |
---|---|---|---|
Etching Time, min | TiO2, at. % | TiN, at. % | TiON, at. % |
0 | 100 | 0 | 0 |
5 | 64.4 | 14.9 | 20.7 |
10 | 58.4 | 21.7 | 19.9 |
15 | 52.3 | 25.1 | 22.6 |
20 | 48.2 | 29.9 | 21.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslimov, A.; Orudzhev, F.; Gadzhiev, M.; Selimov, D.; Tyuftyaev, A.; Kanevsky, V. Facile Synthesis of Ti/TiN/TiON/TiO2 Composite Particles for Plasmon-Enhanced Solar Photocatalytic Decomposition of Methylene Blue. Coatings 2022, 12, 1741. https://doi.org/10.3390/coatings12111741
Muslimov A, Orudzhev F, Gadzhiev M, Selimov D, Tyuftyaev A, Kanevsky V. Facile Synthesis of Ti/TiN/TiON/TiO2 Composite Particles for Plasmon-Enhanced Solar Photocatalytic Decomposition of Methylene Blue. Coatings. 2022; 12(11):1741. https://doi.org/10.3390/coatings12111741
Chicago/Turabian StyleMuslimov, Arsen, Farid Orudzhev, Makhach Gadzhiev, Daud Selimov, Alexandr Tyuftyaev, and Vladimir Kanevsky. 2022. "Facile Synthesis of Ti/TiN/TiON/TiO2 Composite Particles for Plasmon-Enhanced Solar Photocatalytic Decomposition of Methylene Blue" Coatings 12, no. 11: 1741. https://doi.org/10.3390/coatings12111741
APA StyleMuslimov, A., Orudzhev, F., Gadzhiev, M., Selimov, D., Tyuftyaev, A., & Kanevsky, V. (2022). Facile Synthesis of Ti/TiN/TiON/TiO2 Composite Particles for Plasmon-Enhanced Solar Photocatalytic Decomposition of Methylene Blue. Coatings, 12(11), 1741. https://doi.org/10.3390/coatings12111741