Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef] [PubMed]
- Sonne, C.; Xia, C.; Lam, S.S. Is engineered wood China’s way to carbon neutrality? J. Bioresourc. Bioprod. 2022, 7, 83–84. [Google Scholar] [CrossRef]
- Nuez, L.; Beaugrand, J.; Shah, D.U.; Mayer-Laigle, C.; Bourmaud, A.; D’arras, P.; Baley, C. The potential of flax shives as reinforcements for injection moulded polypropylene composites. Ind. Crops Prod. 2020, 148, 112324. [Google Scholar] [CrossRef]
- Ajao, O.; Benali, M.; Faye, A.; Li, H.; Maillard, D.; Ton-That, M.T. Multi-product biorefnery system for wood-barks valorization into tannins extracts, lignin-based polyurethane foam and cellulose-based composites: Techno-economic evaluation. Ind. Crops Prod. 2021, 167, 113435. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.; Wang, C.; Yang, G.; Janaswamy, S.; Xu, F.; Liu, Z. Preparation and characterization of lignin nanoparticles and chitin nanofibers reinforced PVA films with UV shielding properties. Ind. Crops Prod. 2022, 188, 115669. [Google Scholar] [CrossRef]
- Shen, H.; Xu, J.; Cao, J.; Jiang, J.; Zhang, S.; Xue, J.; Zhang, L. Evolution of extractive composition in thermally modifed Scots pine during artifcial weathering. Holzforschung 2019, 73, 747–755. [Google Scholar] [CrossRef]
- Liu, M.; Yi, Q.; Li, J.; Ma, E.; Liu, R. Synergistic effect of montmorillonite/lignin on improvement of water resistance and dimensional stability of Populus cathayana. Ind. Crops Prod. 2019, 141, 111747–111755. [Google Scholar] [CrossRef]
- Fejfer, M.; Matłoka, A.; Siepak, S. Spectrophotometric Determination of PEG in Waterlogged Archaeological Wood and Impregnation Solutions. Stud. Conserv. 2021, 66, 182–189. [Google Scholar] [CrossRef]
- Popescu, C.M.; Jones, D.; Kržišnik, D.; Humar, M. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT-IR spectroscopy and chemometric methods. J. Mol. Struct. 2020, 1200, 127133. [Google Scholar] [CrossRef]
- Wang, W.; Ran, Y.; Wang, J. Improved performance of thermally modifed wood via impregnation with carnauba wax/organoclay emulsion. Constr. Build. Mater. 2020, 247, 118586. [Google Scholar] [CrossRef]
- Lesar, B.; Humar, M. Use of wax emulsions for improvement of wood durability and sorption properties. Eur. J. Wood Wood Prod. 2011, 69, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Humar, M.; Kržišnik, D.; Lesar, B.; Brischke, C. The performance of wood decking after five years of exposure: Verification of the combined effect of wetting ability and durability. Forests 2019, 10, 903. [Google Scholar] [CrossRef] [Green Version]
- Evans, P.; Wingate-Hill, R.; Cunningham, R. Wax and oil emulsion additives: How effective are they at improving the performance of preservative-treated wood? For. Prod. J. 2009, 59, 66–70. [Google Scholar]
- Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. Improvement of termite resistance, dimensional stability and mechanical properties of pine wood by paraffin impregnation. Eur. J. Wood Wood Prod. 2014, 72, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Cao, J.; Wang, W.; Shen, H. Preparation of a synergistically stabilized oil-in-water paraffin Pickering emulsion for potential application in wood treatment. Holzforschung 2018, 72, 489–497. [Google Scholar] [CrossRef]
- Jiang, J.; Mei, C.; Pan, M.; Cao, J. How does Pickering Emulsion Pre-treatment Influence the Properties of Wood Flour and its Composites with High-Density Polyethylene? Polymers 2019, 11, 1115. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhou, J.; Du, C. Development of a Polyacrylate/Silica Nanoparticle Hybrid Emulsion for Delaying Nutrient Release in Coated Controlled-Release Urea. Coatings 2019, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Acosta, A.P.; Labidi, J.; Barbosa, K.T.; Cruz, N.; Delucis RD, A.; Gatto, D.A. Termite resistance of a fast-growing pine wood treated by in situ polymerization of three different precursors. Forests 2020, 11, 865. [Google Scholar] [CrossRef]
- Li, Y.; Dong, X.; Lu, Z.; Jia, W.; Liu, Y. Effect of polymer in situ synthesized from methyl methacrylate and styrene on the morphology, thermal behavior, and durability of wood. J. Appl. Polym. Sci. 2013, 128, 13–20. [Google Scholar]
- Hoque, M.E.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T. Physical, mechanical, and biodegradable properties of meranti wood polymer composites. Mater. Des. 2014, 64, 743–749. [Google Scholar] [CrossRef]
- Islam, M.S.; Hamdan, S.; Hasan, M.; Ahmeda, A.S.; Rahman, M.R. Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC). Int. Biodeterior. Biodegrad. 2012, 72, 108–113. [Google Scholar] [CrossRef]
- Long, L.; Xu, J.; Wan, X.; Qian, L. Surface modification of nano-alumina and its application in preparing polyacrylate water-based wood coating. J. Polym. Eng. 2013, 33, 767–774. [Google Scholar] [CrossRef]
- Lahtela, V.; Karki, T. Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood. Wood Mater. Sci. Eng. 2016, 11, 217–227. [Google Scholar] [CrossRef]
- Stamm, A.J.; Hansen, L.A. Minimizing wood shrink-age and swelling: Effect of heating in various gases. Ind. Eng. Chem. 1937, 29, 831–833. [Google Scholar] [CrossRef]
- Burmester, A. Effects of heat-pressure treatments of semi-dry wood on its dimensional stability. Holz Roh Werkst. 1973, 31, 237–243. [Google Scholar] [CrossRef]
- Giebeler, E. Dimensional stabilisation of wood by moisture-heat-pressuretreatment. Holz Roh Werkst. 1983, 41, 87–94. [Google Scholar] [CrossRef]
- Militz, H.; Altgen, M. Processes and properties of thermally modifed wood manufactured in Europe. In Deterioration and Protection of Sustainable Biomaterials. Am. Chem. Soc. 2014, 16, 269–285. [Google Scholar]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modifcation of wood-A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Shen, H.; Cao, J.; Jiang, J.; Xu, J. Anti-weathering properties of a thermally treated wood surface by two-step treatment with titanium dioxide nanoparticle growth and polydimethylsiloxane coating. Prog. Org. Coat. 2018, 125, 1–7. [Google Scholar] [CrossRef]
- Sun, B.; Wang, X.; Liu, J. Changes in dimensional stability and mechanical properties of Eucalyptus pellita by melamine-urea-formaldehyde resin impregnation and heat treatment. Eur. J. Wood Wood Prod. 2013, 71, 557–562. [Google Scholar] [CrossRef]
- Hung, K.C.; Wu, J.H. Characteristics and thermal decomposition kinetics of wood-SiO2 composites derived by the sol-gel process. Holzforschung 2017, 71, 233–240. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, Y.; Mei, C.; Cao, J. Polyethylene glycol and silica sol penetration improves hydrophobicity and dimensional stability of wood after a short-time treatment. Eur. J. Wood Prod. 2021, 79, 1395–1404. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Du, J.; Li, H.; Mei, C.; Gong, X. Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material. Coatings 2022, 12, 1465. https://doi.org/10.3390/coatings12101465
Jiang J, Du J, Li H, Mei C, Gong X. Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material. Coatings. 2022; 12(10):1465. https://doi.org/10.3390/coatings12101465
Chicago/Turabian StyleJiang, Jun, Jingjing Du, Huixian Li, Changtong Mei, and Xuemei Gong. 2022. "Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material" Coatings 12, no. 10: 1465. https://doi.org/10.3390/coatings12101465
APA StyleJiang, J., Du, J., Li, H., Mei, C., & Gong, X. (2022). Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material. Coatings, 12(10), 1465. https://doi.org/10.3390/coatings12101465