Chemical Vapor Deposition and Thermal Oxidation of Cuprous Phosphide Nanofilm
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.; Zhu, H.H.; Noh, Y.Y. Solution-processed inorganic p-channel transistors: Recent advances and perspectives. Mat. Sci. Eng. R Rep. 2019, 135, 85–100. [Google Scholar] [CrossRef]
- Teng, F.; Hu, K.; Ouyang, W.X.; Fang, X.S. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 2018, 30, 1706262. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Jeong, J.K. Recent progress and perspectives of field-effect transistors based on p-type oxide semiconductors. Phys. Status Solidi R 2021, 2100394. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, S.; Zhang, X.W.; Wei, S.H. Design of p-type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites. Phys. Rev. Mater. 2019, 3, 055201. [Google Scholar] [CrossRef]
- Jayathilaka, K.M.D.C.; Kapaklis, V.; Siripala, W.; Jayanetti, J.K.D.S. Ammonium sulfide surface treatment of electrodeposited p-type cuprous oxide thin films. Electron. Mater. Lett. 2014, 10, 379–382. [Google Scholar] [CrossRef]
- Parreira, P.; Lavareda, G.; Valente, J.; Nunes, F.T.; Amaral, A.; de Carvalho, C.N. Optoelectronic properties of transparent p-type semiconductor CuxS thin films. Phys. Status Solidi A 2010, 207, 1652–1654. [Google Scholar] [CrossRef]
- Yamada, N.; Ino, R.; Tomura, H.; Kondo, Y.; Ninomiya, Y. High-mobility transparent p-type CuI semiconducting layers fabricated on flexible plastic sheets: Toward flexibletransparent electronics. Adv. Electron. Mater. 2017, 3, 1700298. [Google Scholar] [CrossRef]
- Sheets, E.J.; Yang, W.C.; Balow, R.B.; Wang, Y.; Walker, B.C.; Stach, E.A.; Agrawal, R. An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters. J. Mater. Res. 2015, 30, 3710–3716. [Google Scholar] [CrossRef]
- Peng, X.; Lv, Y.F.; Fu, L.; Chen, F.; Su, W.T.; Li, J.Z.; Zhang, Q.; Zhao, S.C. Photoluminescence properties of cuprous phosphide prepared through phosphating copper with a native oxide layer. RSC Adv. 2021, 11, 34095–34100. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Ma, X.Y.; Xia, B.; Hu, X.Y.; Fan, J.; Liu, E.Z. Efficient photocatalytic H2 evolution over Cu and Cu3P co-modified TiO2 nanosheet. Int. J. Hydrogen Energy 2021, 46, 19373–19384. [Google Scholar] [CrossRef]
- Gaspari, R.; Labat, F.; Manna, L.; Adamo, C.; Cavalli, A. Semiconducting and optical properties of selected binary compounds by linear response DFT plus U and hybrid functional methods. Theor. Chem. Acc. 2016, 135, 73. [Google Scholar] [CrossRef]
- Li, H.; Jia, C.; Meng, X.W.; Li, H.B. Chemical synthesis and applications of colloidal metal phosphide nanocrystals. Front. Chem. 2019, 6, 652. [Google Scholar] [CrossRef] [Green Version]
- Kuwano, T.; Katsube, R.; Nose, Y. Improvement of ohmic behavior of back contact in ZnSnP2 solar cells by inserting Cu3P. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference PVSC, Chicago, IL, USA, 16–21 June 2019; pp. 3007–3009. [Google Scholar]
- Zhu, S.; Wang, J.; He, Y.; Yu, Z.; Wang, X.; Su, W. In situ photodeposition of amorphous NixP on CdS nanorods for efficient visible-light photocatalytic H2 generation. Catal. Sci. Technol. 2019, 9, 5394–5400. [Google Scholar] [CrossRef]
- Tappan, B.A.; Chen, K.; Lu, H.; Sharada, S.M.; Brutchey, R.L. Synthesis and electrocatalytic HER studies of carbene-ligated Cu3−xP nanocrystals. ACS Appl. Mater. Interf. 2020, 12, 16394–16401. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, J.; Lee, L.Y.S. Highly promoted hydrogen production enabled by interfacial P N chemical bonds in copper phosphosulfide Z-scheme composite. Appl. Catal. B 2021, 283, 119624. [Google Scholar] [CrossRef]
- Wolff, A.; Doert, T.; Hunger, J.; Kaiser, M.; Pallmann, J.; Reinhold, R.; Yogendra, S.; Giebeler, L.; Sichelschmidt, J.; Schnelle, W.; et al. Low-temperature tailoring of copper-deficient Cu3–xP-electric properties, phase transitions, and performance in lithium-ion batteries. Chem. Mater. 2018, 30, 7111–7123. [Google Scholar] [CrossRef] [Green Version]
- Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route. Appl. Catal. B 2019, 240, 253–261. [Google Scholar] [CrossRef]
- Pfeiffer, H.; Tancret, F.; Brousse, T. Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: A probable anode for lithium ion batteries. Electrochim. Acta 2005, 50, 4763–4770. [Google Scholar] [CrossRef]
- Pfeiffer, H.; Tancret, F.; Bichat, M.P.; Monconduit, L.; Favier, F.; Brousse, T. Air stable copper phosphide (Cu3P): A possible negative electrode material for lithium batteries. Electrochem. Commun. 2004, 6, 263–267. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, J.; Woo, S.G.; Park, Y.; Yoon, J.C.; Park, H.J.; Kim, N.Y.; Shin, H.S.; Lee, Z. Epitaxially grown copper phosphide (Cu3P) nanosheets nanoarchitecture compared with film morphology for energy applications. Surf. Interf. 2021, 26, 101369. [Google Scholar] [CrossRef]
- Mu, H.; Liu, Z.; Bao, X.; Wan, Z.; Liu, G.; Li, X.; Shao, H.; Xing, G.; Shabbir, B.; Li, L.; et al. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals. Front. Optoelectron. 2020, 13, 139–148. [Google Scholar] [CrossRef]
- Pawar, S.M.; Pawar, B.S.; Babar, P.T.; Ahmed, A.T.A.; Chavan, H.S.; Jo, Y.; Cho, S.; Kim, J.; Inamdar, A.I.; Kim, J.H.; et al. Electrosynthesis of copper phosphide thin films for efficient water oxidation. Mater. Lett. 2019, 241, 243–247. [Google Scholar] [CrossRef]
- Hao, J.H.; Yang, W.S.; Huang, Z.P.; Zhang, C. Superhydrophilic and superaerophobic copper phosphide microsheets for efficient electrocatalytic hydrogen and oxygen evolution. Adv. Mater. Interf. 2016, 3, 1600236. [Google Scholar] [CrossRef]
- Yoo, W.S.; Harima, H.; Yoshimoto, M. Polarized Raman signals from Si wafers: Dependence of in-plane incident orientation of probing light. ECS J. Solid State Sci. Technol. 2015, 4, 356–363. [Google Scholar] [CrossRef]
- Poborchii, V.; Tada, T.; Morita, Y.; Kanayama, T.; Geshev, P.I. High near-ultraviolet Raman efficiency of silicon nanowires with small cross sections. Phys. Rev. B 2011, 83, 153412. [Google Scholar] [CrossRef]
- Liu, S.L.; He, X.D.; Zhu, J.P.; Xu, L.Q.; Tong, J.B. Cu3P/RGO Nanocomposite as a new anode for lithium-ion batteries. Sci. Rep. 2016, 6, 35189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.H.; Lv, Y.F.; Li, J.Z.; Huang, F.; Nie, P.B.; Zhang, S.W.; Zhao, S.C.; Zhao, S.X.; We, G.D. CVDcontrolled growth of large-scale WS2 monolayers. RSC Adv. 2019, 9, 29628. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, S.; Krasic, M.S. Asymmetric defects in one-dimensional photonic lattices. Laser Phys. 2021, 31, 023001. [Google Scholar] [CrossRef]
- Fedele, F.; Yang, J.K.; Chen, Z.G. Defect modes in one-dimensional photonic lattices. Opt. Lett. 2005, 30, 1506–1508. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zheng, H.; Kou, Y.C.; Su, X.Y.; Kadasala, N.R.; Gao, M.; Chen, L.; Han, D.L.; Liu, Y.; Yang, J.H. Self-sustainable and recyclable ternary Au@Cu2O-Ag nanocomposites: Application in ultrasensitive SERS detection and highly efficient photocatalysis of organic dyes under visible light. Microsyst. Nanoeng. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Singh, J.; Juneja, S.; Soni, R.K.; Bhattacharya, J. Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO-Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J. Colloid Interf. Sci. 2021, 590, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Szczuka, C.; Drake, M.; Reimer, J.A. Effects of laser-induced heating on nitrogen-vacancy centers and single-nitrogen defects in diamond. J. Phys. D Appl. Phys. 2017, 50, 395307. [Google Scholar] [CrossRef] [Green Version]
- Houng, B.; Wu, J.K.; Yeh, P.C.; Yeh, W.L.; Sun, C.K. Effect of Cu addition on the properties of the RF magnetron-sputtered Cu2O thin films. J. Electroceram. 2020, 45, 129–134. [Google Scholar] [CrossRef]
- Dubale, A.A.; Pan, C.J.; Tamirat, A.G.; Chen, H.M.; Su, W.N.; Chen, C.H.; Rick, J.; Ayele, D.W.; Aragaw, B.A.; Lee, J.F.; et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 2015, 3, 12482–12499. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Lv, Y.; Zhao, S. Chemical Vapor Deposition and Thermal Oxidation of Cuprous Phosphide Nanofilm. Coatings 2022, 12, 68. https://doi.org/10.3390/coatings12010068
Peng X, Lv Y, Zhao S. Chemical Vapor Deposition and Thermal Oxidation of Cuprous Phosphide Nanofilm. Coatings. 2022; 12(1):68. https://doi.org/10.3390/coatings12010068
Chicago/Turabian StylePeng, Xue, Yanfei Lv, and Shichao Zhao. 2022. "Chemical Vapor Deposition and Thermal Oxidation of Cuprous Phosphide Nanofilm" Coatings 12, no. 1: 68. https://doi.org/10.3390/coatings12010068
APA StylePeng, X., Lv, Y., & Zhao, S. (2022). Chemical Vapor Deposition and Thermal Oxidation of Cuprous Phosphide Nanofilm. Coatings, 12(1), 68. https://doi.org/10.3390/coatings12010068