A Note on the Influence of Smectite Coating on the Coefficient of Restitution of Natural Sand Particles Impacting Granitic Blocks
Abstract
:1. Introduction
2. Materials and Coating Process
2.1. Materials
2.2. Coating Procedure and Coating Analysis
3. Experimental Setup and Testing Program
3.1. Experimental Setup
3.2. Testing Program
4. Results and Discussion
4.1. Coefficient of Restitution
4.2. Range of COR Values and Comparison between 2D and 3D Analysis
4.3. Influence of Coating on COR Values
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Clelland, R.; Hrenya, C.M. Simulations of a binary-sized mixture of inelastic grains in rapid shear flow. Phys. Rev. E 2002, 65, 031301. [Google Scholar] [CrossRef]
- Moriguchi, S.; Borja, R.I.; Yashima, A.; Sawada, K. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 2009, 4, 57–71. [Google Scholar] [CrossRef]
- Teufelsbauer, H.; Wang, Y.; Pudasaini, S.P.; Borja, R.I.; Wu, W. DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech. 2011, 6, 119. [Google Scholar] [CrossRef]
- Cui, Y.; Choi, C.E.; Lui, L.H.D.; Ng, C.W.W. Effects of particle size of mono-disperse granular flows impacting a rigid barrier. Nat Hazards 2018, 91, 1179–1201. [Google Scholar] [CrossRef]
- Ahamed, M.A.A.; Perera, M.S.A.; Li, D.-Y.; Ranjith, P.G.; Matthai, S.K. Proppant damage mechanisms in coal seam reservoirs during the hydraulic fracturing process: A review. Fuel 2019, 253, 615–629. [Google Scholar] [CrossRef]
- Bandara, K.M.A.S.; Ranjith, P.G.; Rathnaweera, T.D.; Wanniarachchi, W.A.M.; Yang, S.Q. Crushing and embedment of proppant packs under cyclic loading: An insight to enhanced unconventional oil/gas recovery. Geosci. Front. 2019. [Google Scholar] [CrossRef]
- Kozicki, J.; Tejchman, J. Application of a cellular automaton to simulations of granular flow in silos. Granul. Matter 2005, 7, 45–54. [Google Scholar] [CrossRef]
- Li, X.; Dong, M.; Li, S.; Shang, Y. Experimental and theoretical studies of the relationship between dry and humid normal restitution coefficients. J. Aerosol. Sci. 2019, 129, 16–27. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Zhang, Y.; Zhang, D. Collision Mechanism and Deposition Characteristics of Particles on the Catenary Insulator Surface. Coatings 2020, 10, 697. [Google Scholar] [CrossRef]
- Sandeep, C.S.; Senetakis, K. Grain-Scale Mechanics of Quartz Sand under Normal and Tangential Loading. Tribol. Int. 2018, 117, 261–271. [Google Scholar] [CrossRef]
- He, H.; Senetakis, K. A micromechanical study of shale rock-proppant composite interface. J. Pet. Sci. Eng. 2020, 184, 106542. [Google Scholar] [CrossRef]
- He, H.; Luo, L.; Senetakis, K. Effect of normal load and shearing velocity on the interface friction of organic shale proppant simulant. Tribol. Int. 2020, 144, 106119. [Google Scholar] [CrossRef]
- Li, S.; Kasyap, S.S.; Senetakis, K. A study on the failure behavior of sand grain contacts with Hertz modeling, image processing, and statistical analysis. Sensors 2021, 21, 4611. [Google Scholar] [CrossRef]
- Sandeep, C.S.; Senetakis, K. Effect of Young’s Modulus and Surface Roughness on the Inter-Particle Friction of Granular Materials. Materials 2018, 11, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandeep, C.S.; Li, S.; Senetakis, K. Scale and surface morphology effects on the micromechanical contact behavior of granular materials. Tribol. Int. 2021, 159, 106929. [Google Scholar] [CrossRef]
- Sandeep, C.S.; Senetakis, K. Influence of morphology on the micro-mechanical behavior of soil grain contacts. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 103–119. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Persson, B.N.J. Relation between interfacial separation and load: A general theory of contact mechanics. Phys. Rev. Lett. 2007, 99, 125502. [Google Scholar] [CrossRef] [Green Version]
- Pohrt, R.; Popov, V.L. Normal contact stiffness of elastic solids with fractal rough surfaces. Phys. Rev. Lett. 2012, 108, 104301. [Google Scholar] [CrossRef]
- Stronge, W.J. Impact Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, A.; Tuozzolo, C.; Louge, M.Y. Measurements of impact properties of small, nearly spherical particles. Exp. Mech. 1997, 37, 292–298. [Google Scholar] [CrossRef]
- Marinack, M.C., Jr.; Musgrave, R.E.; Higgs, C.F., III. Experimental investigations on the coefficient of restitution of single particles. Tribol. Trans. 2013, 56, 572–580. [Google Scholar] [CrossRef]
- Tang, H.; Song, R.; Dong, Y.; Song, X. Measurement of Restitution and Friction Coefficients for Granular Particles and Discrete Element Simulation for the Tests of Glass Beads. Materials 2019, 12, 3170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryaei, A.; Hashemnia, K.; Jafarpur, K. Experimental and numerical study of ball size effect on restitution coefficient in low velocity impacts. Int. J. Impact Eng. 2010, 37, 1037–1044. [Google Scholar] [CrossRef]
- Jiang, Z.; Du, J.; Rieck, C.; Bück, A.; Tsotsas, E. PTV experiments and DEM simulations of the coefficient of restitution for irregular particles impacting on horizontal substrates. Powder Technol. 2019, 360, 352–365. [Google Scholar] [CrossRef]
- Thornton, C. Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres. J. Appl. Mech. 1997, 64, 383–386. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Yu, J.; Cao, W.; Liu, Z.; Wang, M.; Liu, Z.; Wang, X. Influence of existing natural fractures and beddings on the formation of fracture network during hydraulic fracturing based on the extended finite element method. Geomech. Geophys. Geo-Energ. Geo-Resour 2020, 6. [Google Scholar] [CrossRef]
- Ma, T.; Chen, P.; Zhao, J. Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources. Geomech Geophys Geo Energy Geo Resour 2016, 2, 365–395. [Google Scholar] [CrossRef] [Green Version]
- Curcio, A. Symmetries and configurations of hydraulic fracturing electromagnetic monitoring: A 2D anisotropic approach. Geomech. Geophys. Geo-Energ. Geo-Resour 2021, 7. [Google Scholar] [CrossRef]
- Kasyap, S.S.; Senetakis, K. Interface load displacement behaviour of sand grains coated with clayey powder: Experimental and analytical studies. Soils Found. 2019, 59, 1695–1710. [Google Scholar] [CrossRef]
- Kasyap, S.S.; Li, S.; Senetakis, K. Influence of natural coating type on the frictional and abrasion behaviour of siliciclastic-coated sedimentary sand grains. Eng. Geol. 2021, 281, 105983. [Google Scholar] [CrossRef]
- Kasyap, S.S.; Senetakis, K.; Zhao, J. Cyclic normal load–displacement behaviour of clay-coated sand grain contacts. Geotechnique 2021, 71, 216–225. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Jordan, T.H. Understanding Earth, 7th ed.; W.H. Freeman and Company: New York, NY, USA, 2014. [Google Scholar]
- Sandeep, C.S.; Senetakis, K. Exploring the micromechanical sliding behavior of typical quartz grains and completely decomposed volcanic granules subjected to repeating shearing. Energies 2017, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Sandeep, C.S.; Senetakis, K. The tribological behavior of two potential-landslide saprolitic rocks. Pure Appl. Geophys. 2018, 175, 4483–4499. [Google Scholar] [CrossRef]
- Sandeep, C.S.; Todisco, M.C.; Nardelli, V.; Senetakis, K.; Coop, M.R.; Lourenco, S.D.N. A micromechanical experimental study of highly/completely decomposed tuff granules. Acta Geotech. 2018, 13, 1355–1367. [Google Scholar] [CrossRef] [Green Version]
- Kasyap, S.S.; Senetakis, K. A micromechanical experimental study of kaolinite-coated sand grains. Tribol. Int. 2018, 126, 206–217. [Google Scholar] [CrossRef]
- Crüger, B.; Salikov, V.; Heinrich, S.; Antonyuk, S.; Sutkar, V.S.; Deen, N.G.; Kuipers, J.A.M. Coefficient of restitution for particles impacting on wet surfaces: An improved experimental approach. Particuology 2016, 25, 1–9. [Google Scholar] [CrossRef]
- Buck, B.; Tang, Y.; Deen, N.G.; Kuipers, J.A.M.; Heinrich, S. Dynamics of wet particle-wall collisions: Influence of wetting condition. Chem. Eng. Res. Des. 2018, 135, 21–29. [Google Scholar] [CrossRef]
- Sandeep, C.S.; Luo, L.; Senetakis, K. Effect of grain size and surface roughness on the normal coefficient of restitution of single grains. Materials 2020, 13, 814. [Google Scholar] [CrossRef] [Green Version]
- Sandeep, C.S.; Senetakis, K.; Cheung, D.K.H.; Choi, C.E.; Wang, Y.; Coop, M.R.; Ng, C.W.W. Experimental study on the coefficient of restitution of grain against block interfaces for natural and engineered materials. Can. Geotech. J. 2021, 58, 35–48. [Google Scholar] [CrossRef]
- Banks, M.; Bridges, N.T.; Benzit, M. Measurements of the Coefficient of Restitution of Quartz Sand on Basalt: Implications for Abrasion Rates on Earth and Mars. Lunar Planet. Sci. 2005, 2116. Available online: https://ntrs.nasa.gov/api/citations/20050166958/downloads/20050166958.pdf (accessed on 15 August 2021).
- Sandeep, C.S.; Senetakis, K. An experimental investigation of the microslip displacement of geological materials. Comput. Geotech. 2019, 107, 55–67. [Google Scholar] [CrossRef]
- Krumbein, W.C.; Sloss, L.L. Stratigraphy and Sedimentation; (No.QE571 K7 1963); W.H. Freeman & Company: New York, NY, USA, 1963. [Google Scholar]
- Kasyap, S.S.; Senetakis, K. An experimental investigation on the tribological behaviour of nominally flat quartz grains with gouge material in dry, partial saturated and submersed conditions. Pure Appl. Geophys. 2020, 177, 3283–3300. [Google Scholar] [CrossRef]
- Ren, J.; Li, S.; He, H.; Senetakis, K. The tribological behavior of iron tailing sand grain contacts in dry, water and biopolymer immersed states. Granul. Matter 2021, 23, 12. [Google Scholar] [CrossRef]
- Patil, D.; Higgs, C.F. A coefficient of restitution model for sphere–plate elastoplastic impact with flexural vibrations. Nonlinear Dyn. 2017, 88, 1817–1832. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Ghasemi, H.; Zhuang, X.; Alajlan, N.; Rabczuk, T. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput. Methods Appl. Mech. Eng. 2018, 337, 95–109. [Google Scholar] [CrossRef]
- Vu-Bac, N.; Lahmer, T.; Zhuang, X.; Nguyen-Thoi, T.; Rabczuk, T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv. Eng. Softw. 2016, 100, 19–31. [Google Scholar] [CrossRef]
Block | Grain Type | Concentration of Clay-Water Solution (mg/mL) | COR-3D | COR-2D | Deviating Angle-3D (°) | Deviating Angle-2D (°) |
---|---|---|---|---|---|---|
Granite | LBS | 0 | 0.78 ± 0.11 | 0.76 ± 0.12 | 23.9 ± 13.4 | 16.0 ± 11.5 |
LBS-50 | 50 | 0.74 ± 0.07 | 0.72 ± 0.08 | 26.9 ± 12.9 | 20.0 ± 13.4 | |
LBS-100 | 100 | 0.69 ± 0.10 | 0.67 ± 0.10 | 29.4 ± 13.5 | 20.0 ± 13.7 | |
LBS-150 | 150 | 0.65 ± 0.13 | 0.64 ± 0.14 | 23.0 ± 11.4 | 15.6 ± 11.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Ren, J.; Kasyap, S.S.; Senetakis, K. A Note on the Influence of Smectite Coating on the Coefficient of Restitution of Natural Sand Particles Impacting Granitic Blocks. Coatings 2021, 11, 996. https://doi.org/10.3390/coatings11080996
Luo L, Ren J, Kasyap SS, Senetakis K. A Note on the Influence of Smectite Coating on the Coefficient of Restitution of Natural Sand Particles Impacting Granitic Blocks. Coatings. 2021; 11(8):996. https://doi.org/10.3390/coatings11080996
Chicago/Turabian StyleLuo, Lina, Jing Ren, Sathwik S. Kasyap, and Kostas Senetakis. 2021. "A Note on the Influence of Smectite Coating on the Coefficient of Restitution of Natural Sand Particles Impacting Granitic Blocks" Coatings 11, no. 8: 996. https://doi.org/10.3390/coatings11080996
APA StyleLuo, L., Ren, J., Kasyap, S. S., & Senetakis, K. (2021). A Note on the Influence of Smectite Coating on the Coefficient of Restitution of Natural Sand Particles Impacting Granitic Blocks. Coatings, 11(8), 996. https://doi.org/10.3390/coatings11080996