Effect of SiO2 and TiO2 Nanoparticles on the Performance of UV Visible Fluorescent Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Ageing Process
2.3. Characterization Methods
3. Results and Discussion
3.1. Morphology of the Input Materials
3.2. Spectral Reflectance of FCs
3.3. ATR-FTIR Spectra of FCs
3.4. Roughness Measurement
3.5. Contact Angle of Water
3.6. Bending Stiffness of Printed Samples
3.7. Microscopy and SEM Images of Printed Surfaces
4. Conclusions
- The addition of lower concentrations of SiO2 (1%) proved more effective in the ageing protection of FC compared to the coatings with added TiO2 nanoparticles that have photocatalytic properties.
- The addition of TiO2 to the coatings enables an increased percentage (%) of spectral reflection and better visual effect of the printed coatings compared to other coating mixtures.
- The results of the coatings’ surface structure analysis showed that roughness was increased with the increased concentration of the nanoparticles. By the addition of SiO2, roughness was decreased after the aging process due to the degradation process. Roughness of the coatings with TiO2 nanoparticles was increased after ageing on the samples with higher concentrations of TiO2 due to the agglomerates of plastisol formed on the surface of the coatings, which is visible in SEM images.
- Surface analysis of coatings showed that TiO2 caused a large increase in the polarity of the surface coatings in comparison to SiO2. Due to this, FCs with the addition of TiO2 could be successfully used for printing on water-based primers and inks. On the other hand, coatings with the addition of SiO2 nanoparticles could be used for printing on non-polar primers and inks.
- The results of the bending stiffness showed that the addition of the nanoparticles to the coating, especially of SiO2, significantly improved the bending stiffness of unaged samples (40%).
- According to the results presented in this research, one can conclude that the addition of nanoparticles can improve the structural and mechanical properties and the visual effect of FCs. With this in mind, the optimization of the nanoparticles’ quantities will help with the functionalities of coatings, i.e., the ageing process, and at the same time could significantly increase the bending stiffness.
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Bob, T. Printing Materials Science and Technology, 2nd ed.; Pira International: Leatherhead, UK, 2004; pp. 54–67. [Google Scholar]
- Diamond, A.S. Optical Science and Engineering. In Handbook of Imaging Materials; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Jameson, D.M. Introduction to Fluorescence, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Becidyan, N. The chemistry and physics of special-effect pigments and colorants for inks and coatings. Paint. Coat. Ind. 2003, 19, 65–76. [Google Scholar]
- Luminescent Flexographic Printing Ink for Printing Control Markings. Available online: https://patents.google.com/patent/EP1256609A2/en (accessed on 21 May 2021).
- Bodenstein, C.; Sauer, H.M.; Hirmer, K.; Dörsam, E. Printing process and characterization of fully pad printed electroluminescent panels on curved surfaces. J. Coat. Technol. Res. 2019, 16, 1673–1681. [Google Scholar] [CrossRef]
- Yook, K.S.; Lee, J.Y. Fabrication and luminance switching of flexible organic bistable light-emitting diodes on flexible substrate. J. Lumin. 2013, 137, 105–108. [Google Scholar] [CrossRef]
- Ataeefard, M.; Nourmohammadian, F. Producing fluorescent digital printing ink: Investigating the effect of type and amount of coumarin derivative dyes on the quality of ink. J. Lumin. 2015, 167, 254–260. [Google Scholar] [CrossRef]
- Becidyan, A.N. Luminescent pigments in security applications. Color Res. Appl. 1995, 20, 124–130. [Google Scholar] [CrossRef]
- Yen, W.M.; Shionoya, S.; Yamamoto, H. Fundamentals of Phosphors; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781315219981. [Google Scholar]
- Elenbaas, W. Fluorescent Lamps; Philips Technical Library; Macmillan Education, Limited: London, UK, 1971; ISBN 9781349003617. [Google Scholar]
- Stewart, R.; Li, L. Enclosed laser processing of laminated metallised polymer films for security marking. In Proceedings of the ICALEO 2003-22nd International Congress on Applications of Laser and Electro-Optics; Congress Proceedings; Laser Institute of America: Jacksonville, FL, USA, 2003; Volume 2003, p. 809. [Google Scholar]
- Kwon, T.H.; Park, S.H.; Ryu, J.Y.; Choi, H.H. Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas. Sens. Actuators B Chem. 1998, 46, 75–79. [Google Scholar] [CrossRef]
- Izdebska, J. Printing on Polymers: Fundamentals and Applications. In Printing on Polymers: Fundamentals and Applications; Izdebska, J., Thomas, S., Eds.; William Andrew Publishing: Oxford, UK, 2016; pp. 371–388. ISBN 978-0-323-37468-2. [Google Scholar]
- Kumar, S.; Verma, N.K.; Singla, M.L. Reflective properties of ZnS nanoparticle coatings. J. Coat. Technol. Res. 2011, 8, 223–228. [Google Scholar] [CrossRef]
- Hang, T.T.X.; Dung, N.T.; Truc, T.A.; Duong, N.T.; Van Truoc, B.; Vu, P.G.; Hoang, T.; Thanh, D.T.M.; Olivier, M.G. Effect of silane modified nano ZnO on UV degradation of polyurethane coatings. Prog. Org. Coat. 2015, 79, 68–74. [Google Scholar] [CrossRef]
- El Saeed, A.M.; El-Fattah, M.A.; Azzam, A.M. Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dye. Pigment. 2015, 121, 282–289. [Google Scholar] [CrossRef]
- Akbarian, M.; Olya, M.E.; Mahdavian, M.; Ataeefard, M. Effects of nanoparticulate silver on the corrosion protection performance of polyurethane coatings on mild steel in sodium chloride solution. Prog. Org. Coat. 2014, 77, 1233–1240. [Google Scholar] [CrossRef]
- Carneiro, C.; Vieira, R.; Mendes, A.M.; Magalhães, F.D. Nanocomposite acrylic paint with self-cleaning action. J. Coat. Technol. Res. 2012, 9, 687–693. [Google Scholar] [CrossRef]
- Solano, R.; Patiño-Ruiz, D.; Herrera, A. Preparation of modified paints with nano-structured additives and its potential applications. Nanomater. Nanotechnol. 2020, 10. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Yu, D. Synthesis of waterborne polyurethane–silver nanoparticle antibacterial coating for synthetic leather. J. Coat. Technol. Res. 2018, 15, 415–423. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen, T.A.; Dao, P.H.; Mac, V.P.; Nguyen, A.H.; Do, M.T.; Nguyen, T.H. Effect of rutile titania dioxide nanoparticles on the mechanical property, thermal stability, weathering resistance and antibacterial property of styrene acrylic polyurethane coating. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 45015. [Google Scholar] [CrossRef] [Green Version]
- TiO2 Impact On Paint Weather Resistance—Coatings World. Available online: https://www.coatingsworld.com/issues/2017-09-01/view_features/tio2-impact-on-paint-weather-resistance/ (accessed on 8 May 2021).
- Al-Kattan, A.; Wichser, A.; Vonbank, R.; Brunner, S.; Ulrich, A.; Zuin, S.; Nowack, B. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ. Sci. Process. Impacts 2013, 15, 2186–2193. [Google Scholar] [CrossRef] [Green Version]
- Kafizas, A.; Kellici, S.; Darr, J.A.; Parkin, I.P. Titanium dioxide and composite metal/metal oxide titania thin films on glass: A comparative study of photocatalytic activity. J. Photochem. Photobiol. A Chem. 2009, 204, 183–190. [Google Scholar] [CrossRef]
- Ferch, H. Amorphous synthetic silica products in powder form. Part 2. Applications [1]. Prog. Org. Coat. 1982, 10, 91–118. [Google Scholar] [CrossRef]
- Product Fact Sheets—Evonik Industries. Available online: https://www.coating-additives.com/en/downloads-and-videos/product-fact-sheets (accessed on 8 May 2021).
- Al-Kattan, A.; Wichser, A.; Vonbank, R.; Brunner, S.; Ulrich, A.; Zuin, S.; Arroyo, Y.; Golanski, L.; Nowack, B. Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 2015, 119, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Sung, L.; Stanley, D.; Gorham, J.M.; Rabb, S.; Gu, X.; Yu, L.L.; Nguyen, T. A quantitative study of nanoparticle release from nanocoatings exposed to UV radiation. J. Coat. Technol. Res. 2015, 12, 121–135. [Google Scholar] [CrossRef]
- Jacobs, D.S.; Huang, S.R.; Cheng, Y.L.; Rabb, S.A.; Gorham, J.M.; Krommenhoek, P.J.; Yu, L.L.; Nguyen, T.; Sung, L. Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure. J. Coat. Technol. Res. 2016, 13, 735–751. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, T.; Arai, K.; Miyamoto, M.; Kimura, Y. Application of silica-containing nano-composite emulsion to wall paint: A new environmentally safe paint of high performance. Prog. Org. Coat. 2006, 55, 276–283. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, L.; Sun, J.; Shen, W. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog. Org. Coat. 2002, 45, 33–42. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. Accelerated UV ageing studies of acrylic, alkyd, and polyvinyl acetate paints: Influence of inorganic pigments. Microchem. J. 2016, 124, 949–961. [Google Scholar] [CrossRef]
- Hare, C.H. The Degradation of coatings by ultraviolet light and electromagnetic radiation. J. Prot. Coat. Linings 1992, 8029–8032. [Google Scholar]
- ISO 4892-2. Available online: https://www.micomlab.com/micom-testing/iso-4892-2/ (accessed on 31 July 2021).
- Fremount, W.; Saverwyns, S. Characterization of daylight fluorescent pigments in contemporary artists’ paints by Raman spectroscopy. In Proceedings of the 11th Infrared and Raman Users Group Conference, Boston, MA, USA, 5–7 November 2014; pp. 39–45. [Google Scholar]
- Parnicka, P.; Mazierski, P.; Grzyb, T.; Lisowski, W.; Kowalska, E.; Ohtani, B.; Zaleska-Medynska, A.; Nadolna, J. Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2. Beilstein J. Nanotechnol. 2018, 9, 447–459. [Google Scholar] [CrossRef] [Green Version]
- Mustalish, R.A. Optical brighteners: History and technology. Stud. Conserv. 2000, 45, 133–136. [Google Scholar] [CrossRef]
- Zheng, B.; Wong, L.P.; Wu, L.Y.L.; Chen, Z. Identifying key factors towards highly reflective silver coatings. Adv. Mater. Sci. Eng. 2017, 2017, 7686983. [Google Scholar] [CrossRef] [Green Version]
- Surface Roughness Measurement. Available online: https://www.mitutoyo.com/wp-content/uploads/2015/04/Surface_Roughness_Measurement.pdf (accessed on 31 July 2021).
- Mahovic Poljacek, S.; Risovic, D.; Furic, K.; Gojo, M. Comparison of fractal and profilometric methods for surface topography characterization. Appl. Surf. Sci. 2008, 254, 3449–3458. [Google Scholar] [CrossRef]
- Nakajima, N.; Harrell, E.R. Rheology of PVC plastisol: Particle size distribution and viscoelastic properties. J. Colloid Interface Sci. 2001, 238, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Yu, E.; Liu, J.; Wei, Z. Agitating transformation during vinyl chloride suspension polymerization: Aggregation morphology and PVC properties. RSC Adv. 2017, 7, 24022–24029. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.R.; Mankoč, B.; Bin Sintang, M.D.; Lesaffer, A.; Dewettinck, K. Fumed silica-based organogels and “aqueous-organic” bigels. RSC Adv. 2015, 5, 9703–9708. [Google Scholar] [CrossRef] [Green Version]
- Cheraghian, G.; Wistuba, M.P. Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen, T.A.; Nguyen, T.H. The synergistic effects of SiO2 nanoparticles and organic photostabilizers for enhanced weathering resistance of acrylic polyurethane coating. J. Compos. Sci. 2020, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.; Lee, S.; Li, Y.; Kim, S.; Kang, T.H.; Suh, Y.D.; Lee, S.; Kim, Y.; Yi, G. Transparent and UV-reflective photonic films and supraballs composed of hollow silica nanospheres. Part. Part. Syst. Charact. 2020, 37, 1900405. [Google Scholar] [CrossRef]
- Torralvo, M.J.; Sanz, J.; Sobrados, I.; Soria, J.; Garlisi, C.; Palmisano, G.; Çetinkaya, S.; Yurdakal, S.; Augugliaro, V. Anatase photocatalyst with supported low crystalline TiO2: The influence of amorphous phase on the activity. Appl. Catal. B Environ. 2018, 221, 140–151. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Niu, J.; Nathan, S.; Zhang, Z.; Zhou, W. Synthesis and luminescence properties of new red-emitting phosphors YGe0.5M0.5O4:Eu3+ (M = Mo, W). J. Lumin. 2020, 217, 116819. [Google Scholar] [CrossRef]
- Elashmawi, I.S.; Alatawi, N.S.; Elsayed, N.H. Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles. Results Phys. 2017, 7, 636–640. [Google Scholar] [CrossRef]
- Baibarac, M.; Stingescu, L.; Stroe, M.; Negrila, C.; Matei, E.; Cotet, L.C.; Anghel, I.; Şofran, I.E.; Baia, L. Poly(vinyl chloride) spheres coated with graphene oxide sheets: From synthesis to optical properties and their applications as flame-retardant agents. Polymers 2021, 13, 565. [Google Scholar] [CrossRef]
- Jakić, M.; Stipanelov Vrandečić, N.; Ocelić Bulatović, V.; Govorčin Bajsić, E. Miscibility of poly(vinyl chloride) with poly(ethylene oxide) of different molecular weights. Chem. Biochem. Eng. Q. 2016, 30, 61–71. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural changes of oak wood main components caused by thermal modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xie, A.; Wu, Y.; Gao, Z.; Xie, H. Synthesis and luminescent properties of novel red-emitting Eu(III) complexes based on alanine aliphatic derivatives with different optical rotation. Mater. Res. Express 2020, 7, 25102. [Google Scholar] [CrossRef]
- Fockaert, L.I.; Pletincx, S.; Ganzinga-Jurg, D.; Boelen, B.; Hauffman, T.; Terryn, H.; Mol, J.M.C. Chemisorption of polyester coatings on zirconium-based conversion coated multi-metal substrates and their stability in aqueous environment. Appl. Surf. Sci. 2020, 508, 144771. [Google Scholar] [CrossRef]
- Sathiyanarayanan, S.; Syed Azim, S.; Venkatachari, G. Preparation of polyaniline-TiO2 composite and its comparative corrosion protection performance with polyaniline. Synth. Met. 2007, 157, 205–213. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, G.; Liu, Z.; He, T. Synthesis and luminescence of spherical Y2O3:Eu3+ and Y2O3:Eu3+/Bi3+ particles. J. Mater. Sci. Mater. Electron. 2016, 27, 6188–6192. [Google Scholar] [CrossRef]
- Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. Int. J. Anal. Chem. 2018, 2018, 7823248. [Google Scholar] [CrossRef]
- Jaroenworaluck, A.; Pijarn, N.; Kosachan, N.; Stevens, R. Nanocomposite TiO2-SiO2 gel for UV absorption. Chem. Eng. J. 2012, 181–182, 45–55. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Chen, J.M.; Kuo, R.R.; Lin, T.S.; Wu, C.F. Influence of surface roughness on water—And oil-repellent surfaces coated with nanoparticles. Appl. Surf. Sci. 2005, 240, 318–326. [Google Scholar] [CrossRef]
- Feng, K.; Hung, G.Y.; Liu, J.; Li, M.; Zhou, C.; Liu, M. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem. Eng. J. 2018, 331, 744–754. [Google Scholar] [CrossRef]
- Aydemir, C.; Altay, B.N.; Akyol, M. Surface analysis of polymer films for wettability and ink adhesion. Color Res. Appl. 2021, 46, 489–499. [Google Scholar] [CrossRef]
- Pustak, A.; Denac, M.; Leskovac, M.; Švab, I.; Musil, V.; Šmit, I. Morphology and mechanical properties of iPP/silica composites modified with (styrene-b-ethylene-co-butylene-b-styrene) grafted with maleic anhydride. Polym. Plast. Technol. Eng. 2015, 54, 647–660. [Google Scholar] [CrossRef]
- Bui, T.M.A.; Nguyen, T.V.; Nguyen, T.M.; Hoang, T.H.; Nguyen, T.T.H.; Lai, T.H.; Tran, T.N.; Nguyen, V.H.; Hoang, V.H.; Le, T.L. Investigation of crosslinking, mechanical properties and weathering stability of acrylic polyurethane coating reinforced by SiO2 nanoparticles issued from rice husk ash. Mater. Chem. Phys. 2020, 241, 122445. [Google Scholar] [CrossRef]
- Wang, Y.; Bhushan, B. Wear-resistant and antismudge superoleophobic coating on polyethylene terephthalate substrate using SiO2 nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 743–755. [Google Scholar] [CrossRef] [PubMed]
Nanoparticles | Production Name | CAS No. | Average Primary Particle Size [nm] | Weight [%] |
---|---|---|---|---|
SiO2 | Aerosil 200 | 112945-52-5 | 12 | >99.8 |
TiO2 | Titanium (IV) oxide, anatase | 1317-70-0 | 15 | 99.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahović Poljaček, S.; Tomašegović, T.; Leskovšek, M.; Stanković Elesini, U. Effect of SiO2 and TiO2 Nanoparticles on the Performance of UV Visible Fluorescent Coatings. Coatings 2021, 11, 928. https://doi.org/10.3390/coatings11080928
Mahović Poljaček S, Tomašegović T, Leskovšek M, Stanković Elesini U. Effect of SiO2 and TiO2 Nanoparticles on the Performance of UV Visible Fluorescent Coatings. Coatings. 2021; 11(8):928. https://doi.org/10.3390/coatings11080928
Chicago/Turabian StyleMahović Poljaček, Sanja, Tamara Tomašegović, Mirjam Leskovšek, and Urška Stanković Elesini. 2021. "Effect of SiO2 and TiO2 Nanoparticles on the Performance of UV Visible Fluorescent Coatings" Coatings 11, no. 8: 928. https://doi.org/10.3390/coatings11080928
APA StyleMahović Poljaček, S., Tomašegović, T., Leskovšek, M., & Stanković Elesini, U. (2021). Effect of SiO2 and TiO2 Nanoparticles on the Performance of UV Visible Fluorescent Coatings. Coatings, 11(8), 928. https://doi.org/10.3390/coatings11080928