Synthesis and Optical Properties of B-Mg co-Doped ZnO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanoparticles
2.2. Characterization of Nanoparticles
3. Results
3.1. XRD Analysis
3.2. SEM and TEM Analysis
3.3. UV–VIS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yogamalar, N.R.; Bose, A.C. Absorption-emission of hydrothermally grown Al: ZnO nanostructures. J. Alloys Compd. 2011, 509, 8493–8500. [Google Scholar] [CrossRef]
- Singh, S.; Thiyagarajan, P.; Kant, K.M.; Anita, D.; Thirupathiah, S.; Rama, N.; Tiwari, B.; Kottaisamy, M.; Rao, M.S.R. Structure, microstructure and physical properties of ZnO based materials in various forms: Bulk, thin film and nano. Phys. D Appl. Phys. 2007, 40, 6312–6327. [Google Scholar] [CrossRef]
- Yi, G.; Wang, C.; Park, W. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005, 20, S22–S34. [Google Scholar] [CrossRef]
- Chaudhary, P.; Singh, P.; Kumar, V. Synthesis and characterization of pure ZnO and La-doped ZnO (Zn0.98La0.02O) films via novel sol-gel screen-printing method. Optik 2018, 158, 376–381. [Google Scholar] [CrossRef]
- Sagheer, R.; Khalil, M.; Abbas, V.; Kayani, Z.N.; Tariq, U. Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 2020, 200, 163428. [Google Scholar] [CrossRef]
- Golic, D.L.; Brankovic, G.; Nesic, M.P.; Vojisavljevic, K.; Recnikn, A.; Daneu, N.; Bernik, S.; Scepanovic, M.; Poleti, D.; Brankovic, Z. Structural charecterization of self-assembled ZnO nanoparticles obtained by the sol–gel method from Zn(CH3COO)2 2H2O. Nanotechnology 2011, 22, 395603. [Google Scholar] [CrossRef] [PubMed]
- Raoufi, D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy 2013, 50, 932–937. [Google Scholar] [CrossRef]
- Sitthichai, S.; Phuruangrat, A.; Thongtem, T.; Thongtem, S. Influence of Mg dopant on photocatalytic properties of Mg-doped ZnO nanoparticles prepared by sol–gel method. J. Ceram. Soc. Jpn. 2017, 125, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Lakshmipriya, V.; Radha, K.P. Synthesis, structural, vibrational, thermal studies of Mg doped ZnO nanoparticles using chemical precipitation method. Int. J. Multidiscip. Educ. Res. 2016, 1, 39–42. [Google Scholar]
- Aneesh, P.M.; Vanaja, K.A.; Jayaraj, M.K. Synthesis of ZnO nanoparticles by hydrothermal method. Proc. SPIE 2007, 6639, 66390J. [Google Scholar]
- Bai, D.S.; Kumar, V.R.; Suvarna, R.P. Synthesis and characterization of zinc oxide nanoparticles by solution combustion method: DC conductivity studies. Indian J. Adv. Chem. Sci. 2017, 5, 137–141. [Google Scholar]
- Liu, S.Y.; Zhu, L.S.; Cao, W.S.; Li, P.D.; Zhan, Z.L.; Chen, Z.H.; Yuan, X.; Wang, J. Defect-related optical properties of Mg-doped ZnO nanoparticles synthesized via low temperature hydrothermal method. J. Alloys Compd. 2021, 858, 157654. [Google Scholar] [CrossRef]
- Kurtaran, S. Al doped ZnO thin films obtained by spray pyrohysis technique: Influence of different annealing time. Opt. Mater. 2021, 114, 110908. [Google Scholar] [CrossRef]
- Park, G.C.; Hwang, S.M.; Choi, J.H.; Kwon, Y.H.; Cho, H.K.; Kim, S.W.; Lim, J.H.; Joo, J. Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Phys. Status Solidi Appl. Mater. Sci. 2013, 210, 1552–1556. [Google Scholar] [CrossRef]
- Srinet, G.; Sharma, S.; Kumar, M.; Anshul, A. Structural and optical properties of Mg modified ZnO nanoparticles: An X-ray peak broadening analysis. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 125, 114381. [Google Scholar] [CrossRef]
- Putri, N.A.; Fauzia, V.; Iwan, S.; Roza, L.; Umar, A.A.; Budi, S. Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl. Surf. Sci. 2018, 439, 285–297. [Google Scholar] [CrossRef]
- Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H. MgxZn1−xO as II-VI widegap semiconductor alloy. Appl. Phys. Lett. 1998, 72, 2466. [Google Scholar] [CrossRef] [Green Version]
- Xie, A.; Yang, D.; Li, X.; Zeng, H. Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. J. Mater. Chem. C 2019, 7, 8969–8974. [Google Scholar] [CrossRef]
- Kasi, G.; Seo, J. Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. C 2019, 98, 717–725. [Google Scholar] [CrossRef]
- Priscilla, S.J.; Daniel, R.; Dhakshayani, Y.; Caroline, S.C.; Sivaji, K. Effect of magnesium dopant on the structural, morphological and electrical properties of ZnO nanoparticles by sol–gel method. Mater. Today Proc. 2021, 36, 793–796. [Google Scholar] [CrossRef]
- Hurma, T. Effect of boron doping concentration on structural optical electrical properties of nanostructured ZnO films. J. Mol. Struct. 2019, 1189, 1–7. [Google Scholar] [CrossRef]
- Pon, V.D.; Wilson, K.S.J.; Hariprasad, K.; Ganesh, V.; Ali, H.E.; Algarni, H.; Yahia, I.S. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices Microstruct. 2021, 151, 106790. [Google Scholar]
- Fay, S.; Feitknecht, L.; Schluchter, R.; Kroll, U.; Sauvain, E.V.; Shah, A. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 2960–2967. [Google Scholar] [CrossRef] [Green Version]
- Fay, S.; Steinhauser, J.; Nicolay, S.; Ballif, C. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells. Thin Solid Films 2010, 518, 2961–2966. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Mimouni, R.; Kamoun, O.; Yumak, A.; Mhamdi, A.; Boubaker, K.; Petkova, P.; Amlouk, M. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO: Mn sprayed thin films compounds. J. Alloys Compd. 2015, 645, 100–111. [Google Scholar] [CrossRef]
- Basnet, P.; Chatterjee, S. Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal sysnthesis—A systematic review. Nano-Struct. Nano-Objects 2020, 22, 100426. [Google Scholar] [CrossRef]
- Mohar, R.S.; Sugihartono, I.; Fauzia, V.; Umar, A.A. Dependence of optical properties of Mg-doped ZnO nanorods on Al dopant. Surf. Interfaces 2020, 19, 100518. [Google Scholar] [CrossRef]
- San, H.S.; Li, B.; Feng, B.X.; He, Y.Y.; Chen, C. Effect on optical band-gap of transparent and conductive CdIn2O4 thin film due to defects-induced Burstein-moss and band-gap narrowing characteristics. Acta Phys. Sin. 2005, 54, 842–847. [Google Scholar]
Compounds | Dopant x | Lattice Parameters | a/c | Volume of Unit Cell V | Crystallite Size D (nm) | Dislocation Density | Strain | |
---|---|---|---|---|---|---|---|---|
a | c | |||||||
ZnO | 3.244 | 5.198 | 1.603 | 47.366 | 38.885 | 6.614 | 8.914 | |
Zn1−xMgxO | 0.1 | 3.247 | 5.204 | 1.603 | 47.510 | 46.441 | 4.637 | 7.464 |
0.2 | 3.246 | 5.201 | 1.602 | 47.473 | 43.315 | 5.330 | 8.003 | |
0.3 | 3.252 | 5.212 | 1.603 | 47.750 | 42.863 | 5.443 | 8.087 | |
0.4 | 3.251 | 5.209 | 1.603 | 47.662 | 39.803 | 6.312 | 8.709 | |
Zn1−x−0.02MgxB0.02O | 0.1 | 3.245 | 5.200 | 1.601 | 47.497 | 43.090 | 5.386 | 8.044 |
0.2 | 3.250 | 5.203 | 1.601 | 47.578 | 40.190 | 6.191 | 8.625 | |
0.3 | 3.248 | 5.201 | 1.602 | 47.510 | 39.247 | 6.492 | 8.832 | |
0.4 | 3.251 | 5.207 | 1.602 | 47.650 | 39.061 | 6.554 | 8.874 | |
Zn1−x−0.04MgxB0.04O | 0.1 | 3.250 | 5.204 | 1.601 | 47.596 | 39.999 | 6.250 | 8.666 |
0.2 | 3.248 | 5.204 | 1.602 | 47.542 | 41.795 | 5.725 | 8.294 | |
0.3 | 3.250 | 5.204 | 1.601 | 47.596 | 39.248 | 6.492 | 8.832 | |
0.4 | 3.249 | 5.206 | 1.602 | 47.583 | 40.579 | 6.073 | 8.542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y.; Xie, A. Synthesis and Optical Properties of B-Mg co-Doped ZnO Nanoparticles. Coatings 2021, 11, 882. https://doi.org/10.3390/coatings11080882
Li Y, Li Y, Xie A. Synthesis and Optical Properties of B-Mg co-Doped ZnO Nanoparticles. Coatings. 2021; 11(8):882. https://doi.org/10.3390/coatings11080882
Chicago/Turabian StyleLi, Yuechan, Yongli Li, and An Xie. 2021. "Synthesis and Optical Properties of B-Mg co-Doped ZnO Nanoparticles" Coatings 11, no. 8: 882. https://doi.org/10.3390/coatings11080882
APA StyleLi, Y., Li, Y., & Xie, A. (2021). Synthesis and Optical Properties of B-Mg co-Doped ZnO Nanoparticles. Coatings, 11(8), 882. https://doi.org/10.3390/coatings11080882