Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Metallography
2.2. Accelerated Wet–Dry Cycle Corrosion Experiment
2.3. Electrochemical Experiments
3. Experimental Results
3.1. Cross-Section Morphology of Oxide Scale under Different Hot Rolling Processes
3.2. Corrosion Kinetics
3.3. Surface Rust Morphology
3.4. Rust Cross-Section Morphology
3.5. Composition of the Rust Layers
3.6. Potentiodynamic Polarization Measurements
4. Discussion
4.1. Corrosion Kinetic Model
4.2. Porosity of Oxide Scale
4.3. Atmospheric Corrosion Resistant Analysis of Different Types of Oxide Scale
4.4. Mechanism of Atmospheric Corrosion Resistance of Substrate with Oxide Scale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frolish, M.F.; Krzyzanowski, M.; Rainforth, W.M.; Beynon, J.H. Oxide scale behaviour on aluminium and steel under hot working conditions. J. Mater. Process. Technol. 2006, 177, 36–40. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, Y.; Qi, H.; Wang, W. Rusting behavior and preventing measures of hot-rolled steel plates for automobile. Corros. Protection. 2008, 29, 316–318, 333. [Google Scholar]
- Suzuki, I.; Masuko, N.; Hisamatsu, Y. Electrochemical properties of iron rust. Corros. Sci. 1979, 19, 521–533. [Google Scholar] [CrossRef]
- de La Fuente, D.; Día, Z.I.; Simancas, J.; Chico, B.; Morcillo, M. Long-term atmospheric corrosion of mild steel. Corros. Sci. 2011, 53, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Pan, C.; Wang, Z.; Yu, G. A study on the initial corrosion behavior of carbon steel exposed to outdoor wet-dry cyclic condition. Corros. Sci. 2014, 88, 89–100. [Google Scholar] [CrossRef]
- Meng, G.Z.; Zhang, C.; Cheng, Y.F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution. Corros. Sci. 2008, 50, 3116–3122. [Google Scholar] [CrossRef]
- Hœrlé, S.; Mazaudier, F.; Dillmann, P.; Santarini, G. Advances in understanding atmospheric corrosion of iron. II: Mechanistic modeling of wet-dry cycles. Corros. Sci. 2004, 46, 1431–1445. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Tzeng, H.J.; Wei, L.I.; Wang, L.H.; Oung, J.C.; Shih, H.C. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions. Corros. Sci. 2005, 47, 1001–1021. [Google Scholar] [CrossRef]
- Chen, R.Y.; Yuen, W.Y.D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxid. Met. 2003, 59, 433–468. [Google Scholar] [CrossRef]
- Chen, R.Y.; Yuen, W.Y.D. Oxide scale structures formed on commercial hot-rolled steel strip and their formation mechanisms. Oxid. Met. 2001, 56, 111–112. [Google Scholar] [CrossRef]
- Collazo, A.; Nóvoa, X.R.; Pérez, C.; Puga, B. EIS study of the rust converter effectiveness under different conditions. Electrochem. Acta 2008, 53, 7565–7574. [Google Scholar] [CrossRef]
- Perez, F.J.; Martinez, L.; Hierro, M.P.; Gómez, C.; Portela, A.L.; Pucci, G.N.; Duday, D.; Lecomte-Beckers, J.; Greday, Y. Corrosion behaviour of different hot rolled steels. Corros. Sci. 2006, 48, 472–480. [Google Scholar] [CrossRef]
- Macák, J.; Sajdl, P.; Kučera, P.; Novotný, R.; Vošta, J. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water. Electrochem. Acta 2006, 51, 3566–3577. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Wang, F. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment. Corros. Sci. 2010, 52, 1796–1800. [Google Scholar] [CrossRef]
- Tamura, H. The role of rusts in corrosion and corrosion protection of iron and steel. Corros. Sci. 2008, 50, 1872–1883. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.F.; Xue, H.B.; Li, X.G.; Qi, H.B.; Cheng, Y.F. Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution. Electrochem. Acta 2009, 54, 4223–4228. [Google Scholar] [CrossRef]
- Thee, C.; Hao, L.; Dong, J.; Mu, X.; Wei, X.; Li, X.; Ke, W. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition. Corros. Sci. 2014, 78, 130–137. [Google Scholar] [CrossRef]
- Hao, M.; Sun, B.; Wang, H. High-Temperature Oxidation Behavior of Fe–1Cr–0.2Si Steel. Materials 2020, 13, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, A. The Effect of Oxide Film on the Electrochemical Corrosion Behaviors of Hot Rolled Steel; Ocean University of Qingdao: Qingdao, China, 2007. [Google Scholar]
- Cao, C. Principle of Corrosion Electrochemistry; Chemical Industry Press: Beijing, China, 2008; pp. 143–145. (In Chinese) [Google Scholar]
- Zhai, J. High Temperature Corrosion of Metal; Beijing University of Aeronautics and Astronautics: Beijing, China, 1994; pp. 15–18. (In Chinese) [Google Scholar]
- Fu, M.-h. Research on Structure and Corrosion Resistance of Oxide Scale of Hot-Strip Steel; Nanchang Hangkong University: Nanchang, China, 2009. [Google Scholar]
- Li, X.; Dong, C.; Xiao, K.; Du, C.; Zhou, H.; Lin, C. Initial Behavior and Mechanism of Metal Atmospheric Corrosion; Science Press: Beijing, China, 2009; pp. 61–67. [Google Scholar]
- Wei, B. Theory and Application of Metal Corrosion; Chemical Industry Press: Beijing, China, 2002; pp. 145–148. [Google Scholar]
- Sun, B.; Liu, Z.; Qiu, Y.; Wang, G. Isothermal eutectic decomposition of FeO formed on a low carbon steel in air. J. Iron Steel Res. 2010, 22, 34–40. [Google Scholar]
- Cao, G.; Tang, J.; Lin, F.; Li, Z.; Yang, M.; Liu, Z. Electrochemical corrosionbehavior of typical structure of oxide scale. J. Cent. South Univ. (Sci. Technol.) 2018, 49, 1366–1372. [Google Scholar]
C | Si | Mn | P | Cr | S |
---|---|---|---|---|---|
0.091 | 0.13 | 1.25 | 0.009 | 0.035 | 0.002 |
Sample | Initial Rolling Temperature (°C) | Finish Temperature (°C) | Coiling Temperature (°C) | Sampling Modes |
---|---|---|---|---|
type I | 1030 | 890 | 565 | Cold sampling |
type II | 1020 | 880 | 580 | Cold sampling |
type III | 1010 | 885 | 590 | Cold sampling |
type IV | 1030 | 892 | 575 | Heat sampling |
Sample | Outer Magnetite Layer | Magnetite Precipitation Inside Wüstite | Magnetite/Fe Eutectoid | Retained Wüstite |
---|---|---|---|---|
type I | Yes | Yes | Yes (>70%) | Yes |
type II | Yes | Yes | Yes (<50%) | Yes |
type III | Yes | Yes | No | Yes |
type IV | Yes | No | No | Yes |
Sample | Kr | Kd | tc, Cycle |
---|---|---|---|
type I | 0.63395 | 1.9422 | 1 |
type II | 0.42622 | 1.46149 | 3 |
type III | 0.34494 | 1.07664 | 4 |
type IV | 0.18565 | 0.917 | 8 |
Sample | Surface Type | Ecorr, V | Icorr, A/cm−2 |
---|---|---|---|
type I | With oxide scale | −0.4240 | 3.151 × 10−6 |
Without oxide scale | −0.4406 | 1.487 × 10−5 | |
type II | With oxide scale | −0.4200 | 2.099 × 10−6 |
Without oxide scale | −0.6258 | 1.771 × 10−5 | |
type III | With oxide scale | −0.3842 | 1.631 × 10−6 |
Without oxide scale | −0.4832 | 1.539 × 10−5 | |
type IV | With oxide scale | −0.3209 | 7.866 × 10−7 |
Without oxide scale | −0.4627 | 1.150 × 10−6 |
Sample | Porosity (%) |
---|---|
type I | 21.19 |
type II | 11.85 |
type III | 10.60 |
type IV | 12.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Cheng, L.; Du, C.-Y.; Zhang, J.-K.; He, Y.-Q.; Cao, G.-M. Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip. Coatings 2021, 11, 517. https://doi.org/10.3390/coatings11050517
Sun B, Cheng L, Du C-Y, Zhang J-K, He Y-Q, Cao G-M. Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip. Coatings. 2021; 11(5):517. https://doi.org/10.3390/coatings11050517
Chicago/Turabian StyleSun, Bin, Lei Cheng, Chong-Yang Du, Jing-Ke Zhang, Yong-Quan He, and Guang-Ming Cao. 2021. "Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip" Coatings 11, no. 5: 517. https://doi.org/10.3390/coatings11050517
APA StyleSun, B., Cheng, L., Du, C.-Y., Zhang, J.-K., He, Y.-Q., & Cao, G.-M. (2021). Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip. Coatings, 11(5), 517. https://doi.org/10.3390/coatings11050517