Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Substrates for Ferroelectric Coating
2.2. Preparation of Ferroelectric BaTiO3 Coating by Hydrothermal Synthesis
2.3. Basic Characterization of the Substrate and Coating
2.4. X-ray Diffraction (XRD), Micro-Raman Spectroscopy, and Piezoresponse Force Microscopy (PFM)
2.5. X-ray Photoelectron Spectroscopy (XPS) and Stability of The Coating
2.6. Cell Seeding
2.7. Evaluation of Cell Number and Cell Population Doubling Time
2.8. Evaluation of the Intensity of Fluorescence
2.9. Measurement of the Size of Cell Adhesion Area
2.10. Statistical Analysis
3. Results and Discussion
3.1. Basic Properties of The Batio3 Film and Ti39Nb Substrate
3.2. XRD Analysis of Ti39Nb Substrates and BaTiO3 Film
3.3. Raman Spectroscopy of Ti39Nb Substrates and BaTiO3 Film
3.4. Piezoresponse Force Microscopy (PFM) of BaTiO3 Film
3.5. XPS Analysis of BaTiO3 Film on Ti39Nb Substrates
3.6. Attachment, Spreading, and Proliferation of Cells on the Materials
3.7. Specific Markers of Adhesion and Differentiation in Cells on the Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gabor, R.; Doubkova, M.; Gorosova, S.; Malanik, K.; Vandrovcova, M.; Cvrcek, L.; Drobikova, K.; Mamulova Kutlakova, K.; Bacakova, L. Preparation of Highly Wettable Coatings on Ti–6Al–4V ELI Alloy for Traumatological Implants Using Micro-Arc Oxidation in an Alkaline Electrolyte. Sci. Rep. 2020, 10, 19780. [Google Scholar] [CrossRef] [PubMed]
- Vandrovcová, M.; Bačáková, L. Adhesion, Growth and Differentiation of Osteoblasts on Surface-Modified Materials Developed for Bone Implants. Physiol. Res. 2011, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Stepanovska, J.; Matejka, R.; Rosina, J.; Bacakova, L.; Kolarova, H. Treatments for Enhancing the Biocompatibility of Titanium Implants. Biomed. Pap. 2020, 164, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asri, R.I.M.; Harun, W.S.W.; Samykano, M.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and Surface Modification on Biocompatible Metals: A Review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Krčil, J.; Rafaj, Z.; Mára, V.; Krum, S.; Starý, V.; Nehasil, V.; Sobotová, J. The Analysis of Thermal and Anodic Oxide Layers on Selected Biocompatible Titanium Alloys. Surf. Interface Anal. 2018, 50, 1007–1011. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Golosova, O.A.; Ivanov, M.B.; Kolobov, Y.R.; Vershinina, T.N. Structure and Properties of Low Modulus Titanium Alloy Ti–26Nb–7Mo–12Zr. Mater. Sci. Technol. 2013, 29, 204–209. [Google Scholar] [CrossRef]
- Vlcak, P.; Drahokoupil, J.; Vertat, P.; Sepitka, J.; Duchon, J. Hardness Response to the Stability of a Ti(+N) Solid Solution in an Annealed TiN/Ti(+N)/Ti Mixture Layer Formed by Nitrogen Ion Implantation into Titanium. J. Alloys Compd. 2018, 746, 490–495. [Google Scholar] [CrossRef]
- Karre, R.; Niranjan, M.K.; Dey, S.R. First Principles Theoretical Investigations of Low Young’s Modulus Beta Ti–Nb and Ti–Nb–Zr Alloys Compositions for Biomedical Applications. Mater. Sci. Eng. C 2015, 50, 52–58. [Google Scholar] [CrossRef]
- Wei, T.Y.; Huang, J.C.; Chao, C.-Y.; Wei, L.L.; Tsai, M.T.; Chen, Y.H. Microstructure and Elastic Modulus Evolution of TiTaNb Alloys. J. Mech. Behav. Biomed. Mater. 2018, 86, 224–231. [Google Scholar] [CrossRef]
- Kim, S.E.; Jeong, H.W.; Hyun, Y.T.; Lee, Y.T.; Jung, C.H.; Kim, S.K.; Song, J.S.; Lee, J.H. Elastic Modulus and in Vitro Biocompatibility of Ti−xNb and Ti−xTa Alloys. Met. Mater. Int. 2007, 13, 145. [Google Scholar] [CrossRef]
- Haynes, D.R.; Rogers, S.D.; Hay, S.; Pearcy, M.J.; Howie, D.W. The Differences in Toxicity and Release of Bone-Resorbing Mediators Induced by Titanium and Cobalt-Chromium-Alloy Wear Particles. J. Bone Joint Surg. Am. 1993, 75, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopova, I.; Stráský, J.; Harcuba, P.; Landa, M.; Janeček, M.; Bačákova, L. Newly Developed Ti-Nb-Zr-Ta-Si-Fe Biomedical Beta Titanium Alloys with Increased Strength and Enhanced Biocompatibility. Mater. Sci. Eng. C 2016, 60, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Stenlund, P.; Omar, O.; Brohede, U.; Norgren, S.; Norlindh, B.; Johansson, A.; Lausmaa, J.; Thomsen, P.; Palmquist, A. Bone Response to a Novel Ti–Ta–Nb–Zr Alloy. Acta Biomater. 2015, 20, 165–175. [Google Scholar] [CrossRef]
- Rahmati, S.; Basiriani, M.B.; Rafienia, M.; Yaghini, J.; Raeisi, K. Synthesis and In Vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V. J. Med. Signals Sens. 2016, 6, 106–111. [Google Scholar] [PubMed]
- Tolde, Z.; Starý, V.; Cvrček, L.; Vandrovcová, M.; Remsa, J.; Daniš, S.; Krčil, J.; Bačáková, L.; Špatenka, P. Growth of a TiNb Adhesion Interlayer for Bioactive Coatings. Mater. Sci. Eng. C 2017, 80, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Jelínek, M.; Buixaderas, E.; Drahokoupil, J.; Kocourek, T.; Remsa, J.; Vaněk, P.; Vandrovcová, M.; Doubková, M.; Bačáková, L. Laser-Synthesized Nanocrystalline, Ferroelectric, Bioactive BaTiO3/Pt/FS for Bone Implants. J. Biomater. Appl. 2018, 32, 1464–1475. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Jiao, Y.; Wu, C.; Guo, S.; Xiao, X.; Wei, X.; Wu, J.; Gao, P.; Wang, N.; et al. Biological Effects of a Three-Dimensionally Printed Ti6Al4V Scaffold Coated with Piezoelectric BaTiO3 Nanoparticles on Bone Formation. ACS Appl. Mater. Interfaces 2020, 12, 51885–51903. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 1979; p. 680. ISBN 978-0-19-170994-4. [Google Scholar]
- Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J.A.L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J. Electrical Activity of Ferroelectric Biomaterials and Its Effects on the Adhesion, Growth and Enzymatic Activity of Human Osteoblast-like Cells. J. Phys. Appl. Phys. 2016, 49, 175403. [Google Scholar] [CrossRef]
- Chen, W.; Yu, Z.; Pang, J.; Yu, P.; Tan, G.; Ning, C. Fabrication of Biocompatible Potassium Sodium Niobate Piezoelectric Ceramic as an Electroactive Implant. Materials 2017, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Baxter, F.R.; Bowen, C.R.; Turner, I.G.; Dent, A.C.E. Electrically Active Bioceramics: A Review of Interfacial Responses. Ann. Biomed. Eng. 2010, 38, 2079–2092. [Google Scholar] [CrossRef] [PubMed]
- Khare, D.; Basu, B.; Dubey, A.K. Electrical Stimulation and Piezoelectric Biomaterials for Bone Tissue Engineering Applications. Biomaterials 2020, 258, 120280. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, C.; Wu, Z.; Hu, L.; Zhang, W.; Zhao, K. Fabrication and in Vitro Biological Properties of Piezoelectric Bioceramics for Bone Regeneration. Sci. Rep. 2017, 7, 43360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilarinho, P.M.; Barroca, N.; Zlotnik, S.; Félix, P.; Fernandes, M.H. Are Lithium Niobate (LiNbO3) and Lithium Tantalate (LiTaO3) Ferroelectrics Bioactive? Mater. Sci. Eng. C 2014, 39, 395–402. [Google Scholar] [CrossRef]
- Rocca, A.; Marino, A.; Rocca, V.; Moscato, S.; de Vito, G.; Piazza, V.; Mazzolai, B.; Mattoli, V.; Ngo-Anh, T.J.; Ciofani, G. Barium Titanate Nanoparticles and Hypergravity Stimulation Improve Differentiation of Mesenchymal Stem Cells into Osteoblasts. Int. J. Nanomed. 2015, 10, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.K.; Thrivikraman, G.; Basu, B. Absence of Systemic Toxicity in Mouse Model towards BaTiO3 Nanoparticulate Based Eluate Treatment. J. Mater. Sci. Mater. Med. 2015, 26, 103. [Google Scholar] [CrossRef]
- Wang, P.; Hao, L.; Wang, Z.; Wang, Y.; Guo, M.; Zhang, P. Gadolinium-Doped BTO-Functionalized Nanocomposites with Enhanced MRI and X-Ray Dual Imaging to Simulate the Electrical Properties of Bone. ACS Appl. Mater. Interfaces 2020, 12, 49464–49479. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, X.; Bai, Y.; Liu, Y.; Wang, Y.; Liu, O.; Yan, F.; Tang, Z.; Zhang, X.; Deng, X. Electroactive BaTiO3 Nanoparticle-Functionalized Fibrous Scaffolds Enhance Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Nanomed. 2017, 12, 4007–4018. [Google Scholar] [CrossRef] [Green Version]
- Amaral, D.L.; Zanette, R.S.; Almeida, C.G.; Almeida, L.B.; de Oliveira, L.F.; Marcomini, R.F.; Nogueira, B.V.; Santos, M.O.; Brandão, H.M.; Maranduba, C.M.; et al. In Vitro Evaluation of Barium Titanate Nanoparticle/Alginate 3D Scaffold for Osteogenic Human Stem Cell Differentiation. Biomed. Mater. 2019, 14, 035011. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.L.A.S.; Zanette, R.S.S.; Souza, G.T.; Silva, S.A.; Aguiar, J.A.K.; Marcomini, R.F.; Carmo, A.M.R.; Nogueira, B.V.; Silva Barros, R.J.; Sá Silva, F.; et al. Induction of Osteogenic Differentiation by Demineralized and Decellularized Bovine Extracellular Matrix Derived Hydrogels Associated with Barium Titanate. Biol. J. Int. Assoc. Biol. Stand. 2020, 66, 9–16. [Google Scholar] [CrossRef]
- Ahmadi, N.; Kharaziha, M.; Labbaf, S. Core–Shell Fibrous Membranes of PVDF–Ba(0.9)Ca(0.1)TiO(3)/PVA with Osteogenic and Piezoelectric Properties for Bone Regeneration. Biomed. Mater. 2019, 15, 015007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cheng, H.; Yang, Q.; Hu, F.; Ouyang, J. Crystallographic Orientation Dependent Dielectric Properties of Epitaxial BaTiO3 Thin Films. Ceram. Int. 2016, 3, 4400–4405. [Google Scholar] [CrossRef]
- Nadol, J.B.; O’Malley, J.T.; Burgess, B.J.; Galler, D. Cellular Immunologic Responses to Cochlear Implantation in the Human. Hear. Res. 2014, 318, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, H.; Uetsuji, Y.; Katayama, T.; Nakamachi, E. Three-Scale Analysis of BaTiO3 Piezoelectric Thin Films Fabrication Process and Its Experimental Validation. J. Mater. Sci. 2011, 46, 1380–1387. [Google Scholar] [CrossRef] [Green Version]
- Hwangbo, S.; Kim, S.D.; Hwang, K.S. In-Vitro Calcium Phosphate Formation on Electrostatic Sprayed – Perovskite BaTiO3 Layer on Ti Implant after Poling Treatment. Ceram. Int. 2015, 41, 2462–2466. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.; Li, W.; Wang, X. Microstructure and Properties of BaTiO3 Ferroelectric Films Prepared by DC Micro Arc Oxidation. Bull. Korean Chem. Soc. 2015, 36, 1178–1182. [Google Scholar] [CrossRef]
- Saldaña, L.; Bensiamar, F.; Boré, A.; Vilaboa, N. In Search of Representative Models of Human Bone-Forming Cells for Cytocompatibility Studies. Acta Biomater. 2011, 7, 4210–4221. [Google Scholar] [CrossRef]
- Zhu, W.; Akbar, S.A.; Asiaie, R.; Dutta, P.K. Synthesis, Microstructure and Electrical Properties of Hydrothermally Prepared Ferroelectric BaTiO3 Thin Films. J. Electroceram. 1998, 2, 21–31. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A.A.; Cline, J.P. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 1–25. [Google Scholar] [CrossRef]
- Taylor, A.; Doyle, N.J. The Solid-Solubility of Oxygen in Nb and Nb-Rich Nb-Hf, Nb-Mo and Nb-W Alloys: Part I: The Nb-O System. J. Common Met. 1967, 13, 313–330. [Google Scholar] [CrossRef]
- Zhao, Z.; Buscaglia, V.; Viviani, M.; Buscaglia, M.T.; Mitoseriu, L.; Testino, A.; Nygren, M.; Johnsson, M.; Nanni, P. Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics. Phys. Rev. B 2004, 70, 024107. [Google Scholar] [CrossRef]
- Merz, W.J. The Electric and Optical Behavior of BaTi${\mathrm{O}}_{3}$ Single-Domain Crystals. Phys. Rev. 1949, 76, 1221–1225. [Google Scholar] [CrossRef]
- DiDomenico, M.; Wemple, S.H.; Porto, S.P.S.; Bauman, R.P. Raman Spectrum of Single-Domain BaTiO3. Phys. Rev. 1968, 174, 522–530. [Google Scholar] [CrossRef]
- Baskaran, N.; Ghule, A.; Bhongale, C.; Murugan, R.; Chang, H. Phase Transformation Studies of Ceramic BaTiO3 Using Thermo-Raman and Dielectric Constant Measurements. J. Appl. Phys. 2002, 91, 10038–10043. [Google Scholar] [CrossRef]
- Wang, J.L.; Leroy, J.; Niu, G.; Saint-Girons, G.; Gautier, B.; Vilquin, B.; Barrett, N. Chemistry and Structure of BaTiO3 Ultra-Thin Films Grown by Different O2 Plasma Power. Chem. Phys. Lett. 2014, 592, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, M.; Watson, L.; Hendry, A. XPS Analysis of Submicrometer Barium Titanate Powder. J. Am. Ceram. Soc. 2004, 87, 371–377. [Google Scholar] [CrossRef]
- Chen, K.-H.; Chang, T.-C.; Hsu, Y.-E.; Chang, G.-C.; Chen, Y.-C.; Xu, H.-Q. Low Temperature Improvement Method on Characteristics of Ba(Zr0.1Ti0.9)O3 Thin Films Deposited on Indium Tin Oxide/Glass Substrates. Appl. Phys. Mater. Sci. Process. 2010, 99, 291–295. [Google Scholar] [CrossRef]
- Tripathy, S.S.; Raichur, A.M. Dissolution Properties of BaTiO3 Nanoparticles in Aqueous Suspensions. J. Exp. Nanosci. 2011, 6, 127–137. [Google Scholar] [CrossRef]
- Emsley, J. The Elements, 2nd ed.; Oxford University Press: Oxford, UK, 1991; p. 264. ISBN 9780198555681. [Google Scholar]
- Šupová, M.; Suchý, T.; Sucharda, Z.; Filová, E.; der Kinderen, J.N.L.M.; Steinerová, M.; Bačáková, L.; Martynková, G.S. The Comprehensive in Vitro Evaluation of Eight Different Calcium Phosphates: Significant Parameters for Cell Behavior. J. Am. Ceram. Soc. 2019, 102, 2882–2904. [Google Scholar] [CrossRef]
- Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of Cell Adhesion, Proliferation and Differentiation on Materials Designed for Body Implants. Biotechnol. Adv. 2011, 29, 739–767. [Google Scholar] [CrossRef] [PubMed]
- Steinerova, M.; Matejka, R.; Stepanovska, J.; Filova, E.; Stankova, L.; Rysova, M.; Martinova, L.; Dragounova, H.; Domonkos, M.; Artemenko, A.; et al. Human Osteoblast-like SAOS-2 Cells on Submicron-Scale Fibers Coated with Nanocrystalline Diamond Films. Mater. Sci. Eng. C 2021, 121, 111792. [Google Scholar] [CrossRef]
- Rohaim, A.; Gong, L.; Li, J.; Rui, H.; Blachowicz, L.; Roux, B. Open and Closed Structures of a Barium-Blocked Potassium Channel. J. Mol. Biol. 2020, 432, 4783–4798. [Google Scholar] [CrossRef]
- Cidad, P.; Alonso, E.; Arévalo-Martínez, M.; Calvo, E.; de la Fuente, M.A.; Pérez-García, M.T.; López-López, J.R. Voltage-Dependent Conformational Changes of Kv1.3 Channels Activate Cell Proliferation. J. Cell. Physiol. 2020, 1–18. [Google Scholar] [CrossRef]
- Kito, H.; Morihiro, H.; Sakakibara, Y.; Endo, K.; Kajikuri, J.; Suzuki, T.; Ohya, S. Downregulation of the Ca2+-Activated K+ Channel KCa3.1 in Mouse Preosteoblast Cells Treated with Vitamin D Receptor Agonist. Am. J. Physiol. Cell Physiol. 2020, 319, C345–C358. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Danti, S.; Moscato, S.; Albertazzi, L.; D’Alessandro, D.; Dinucci, D.; Chiellini, F.; Petrini, M.; Menciassi, A. Preparation of Stable Dispersion of Barium Titanate Nanoparticles: Potential Applications in Biomedicine. Colloids Surf. B Biointerfaces 2010, 76, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.N.; Crippa, G.E.; Trabuco, A.C.; Gimenes, R.; Zaghete, M.A.; Palioto, D.B.; de Oliveira, P.T.; Rosa, A.L.; Beloti, M.M. In Vitro Biocompatibility of Poly(Vinylidene Fluoride–Trifluoroethylene)/Barium Titanate Composite Using Cultures of Human Periodontal Ligament Fibroblasts and Keratinocytes. Acta Biomater. 2010, 6, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.P.; Mound, B.A.; Nino, J.C.; Allen, J.B. Biocompatible Evaluation of Barium Titanate Foamed Ceramic Structures for Orthopedic Applications. J. Biomed. Mater. Res. A 2014, 102, 2089–2095. [Google Scholar] [CrossRef]
- Ehterami, A.; Kazemi, M.; Nazari, B.; Saraeian, P.; Azami, M. Fabrication and Characterization of Highly Porous Barium Titanate Based Scaffold Coated by Gel/HA Nanocomposite with High Piezoelectric Coefficient for Bone Tissue Engineering Applications. J. Mech. Behav. Biomed. Mater. 2018, 79, 195–202. [Google Scholar] [CrossRef]
- Liu, W.; Yang, D.; Wei, X.; Guo, S.; Wang, N.; Tang, Z.; Lu, Y.; Shen, S.; Shi, L.; Li, X.; et al. Fabrication of Piezoelectric Porous BaTiO3 Scaffold to Repair Large Segmental Bone Defect in Sheep. J. Biomater. Appl. 2020, 35, 544–552. [Google Scholar] [CrossRef]
Film/Substrate | Roughness Ra [μm] | Hardness [GPa] | Reduced Modulus of Elasticity Er [MPa] | Thickness [μm] |
---|---|---|---|---|
Film (BaTiO3) | 0.93 ± 0.05 *** | 3.20 ± 1.30 | 142.00 ± 35.00 *** | 0.94 ± 0.06 |
Substrate (Ti39Nb) | 0.02 ± 0.01 | 3.10 ± 0.10 | 95.00 ± 2.50 | N/A |
Procedure | Concentration [%] | ||||
---|---|---|---|---|---|
Ba | Ti | O | Ba/Ti | O/(Ba + Ti) | |
As prepared | 17.5 | 19.6 | 62.9 | 0.89 | 1.69 |
Plus 1 week in saline sol. | 10.5 | 17.9 | 71.6 | 0.59 | 2.52 |
Plus 3 weeks in saline sol. | 4.9 | 20.0 | 75.1 | 0.24 | 3.02 |
Plus 12 weeks in saline sol. | 1.1 | 23.8 | 75.2 | 0.05 | 3.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandrovcova, M.; Tolde, Z.; Vanek, P.; Nehasil, V.; Doubková, M.; Trávníčková, M.; Drahokoupil, J.; Buixaderas, E.; Borodavka, F.; Novakova, J.; et al. Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response. Coatings 2021, 11, 210. https://doi.org/10.3390/coatings11020210
Vandrovcova M, Tolde Z, Vanek P, Nehasil V, Doubková M, Trávníčková M, Drahokoupil J, Buixaderas E, Borodavka F, Novakova J, et al. Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response. Coatings. 2021; 11(2):210. https://doi.org/10.3390/coatings11020210
Chicago/Turabian StyleVandrovcova, Marta, Zdenek Tolde, Premysl Vanek, Vaclav Nehasil, Martina Doubková, Martina Trávníčková, Jan Drahokoupil, Elena Buixaderas, Fedir Borodavka, Jaroslava Novakova, and et al. 2021. "Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response" Coatings 11, no. 2: 210. https://doi.org/10.3390/coatings11020210
APA StyleVandrovcova, M., Tolde, Z., Vanek, P., Nehasil, V., Doubková, M., Trávníčková, M., Drahokoupil, J., Buixaderas, E., Borodavka, F., Novakova, J., & Bacakova, L. (2021). Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response. Coatings, 11(2), 210. https://doi.org/10.3390/coatings11020210