Evaluating the Protective Effects of Calcium Carbonate Coating on Sandstone Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Stone Treatment
2.3. Characterization of Calcium Carbonate Powders and Stone Samples
2.4. Test of Stone Surface Color Change
2.5. Protection Performance of the Stone Coatings P
2.5.1. Test of Water Absorption
2.5.2. Test of Water Vapor Permeability
2.5.3. Contact Angle Test
2.5.4. Test of Weather Resistance
3. Results and Discussion
3.1. Characterization and Analysis of Powder Samples
3.1.1. X-ray Analysis
3.1.2. Fourier Transform Infrared Absorption Spectrum Analysis
3.1.3. Scanning−Electron Microscopic Analysis
3.2. Characteristics and Properties of the Coatings on the Stone
3.2.1. X-ray Diffraction Analyses
3.2.2. Scanning Electron Microscopic Analysis
3.2.3. SEM/EDS Analysis
3.2.4. Sandstone Pore Characteristics Analysis
3.2.5. Effect of Layer Number and Reactant Concentration on the Appearance
3.2.6. Wettability
3.2.7. Water Absorption Analysis
3.2.8. Water Vapor Permeability Analysis
3.2.9. Weather Resistance of the Coated Stone
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Q.; Zhang, Y. Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Eng. Geol. 2019, 248, 70–79. [Google Scholar] [CrossRef]
- Barzoi, S.C.; Luca, A.C. Significance of studying the petrography and miner-alogy of the geological environment of old rupestrian churches to prevent their deterioration. A case study from the South Carpathians. J. Cult. Herit. 2013, 14, 163–168. [Google Scholar]
- Franklin, B.J.; Young, J.F.; Powell, R. Testing of Sydney dimension sandstone for use in the con-servation of heritage buildings. Aust. J. Earth Sci. 2014, 61, 351–362. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Ma, D.; Cao, W.; Chen, L.; Zhou, J. Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content. Eng. Fract. Mech. 2018, 193, 47–65. [Google Scholar] [CrossRef]
- Jia, M.; He, L.; Pan, A.; Ma, X.; Huang, S.; Simon, S. Silica-based hybrids for adhesive coatings and their anti-salt damage in the protection of ancient sandstone. Prog. Org. Coat. 2021, 151, 106037. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, B.J. Assessment of damage from organic protective coating treatments to historic stone buildings and sculptures. Appl. Mech. Mater. 2010, 44, 610–613. [Google Scholar] [CrossRef]
- Tesser, E.; Lazzarini, L.; Bracci, S. Investigation on the chemical structure and ageing transformations of the cycloaliphatic epoxy resin EP2101 used as stone consolidant. J. Cult. Herit. 2018, 31, 72–82. [Google Scholar] [CrossRef]
- Favaro, M.; Mendichi, R.; Ossola, F.; Simon, S.; Tomasin, P.; Vigato, P.A. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part II: Photo-oxidative and salt-induced weathering of acrylic–silicone mixtures. Polym. Degrad.Stab. 2007, 92, 335–351. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Ben Chekroun, K.; Gonzalez-Muñoz, M.T. Conservation of ornamental stone by Myxococcus can thus-induced carbonate biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Lopez, C.; Rodriguez-Navarro, C.; Piñar, G.; Carrillo-Rosúa, F.J.; Rodriguez-Gallego, M.; González-Muñoz, M.T. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 2007, 68, 1929–1936. [Google Scholar] [CrossRef] [Green Version]
- Jroundi, F.; Gonzalez-Muñoz, M.T.; Garcia-Bueno, A.; Rodriguez-Navarro, C. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater. 2014, 10, 3844–3854. [Google Scholar] [CrossRef]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- Chen, Z.; Li, C.; Yang, Q.; Nan, Z. Transformation of novel morphologies and polymorphs of CaCO3 crystals induced by the anionic surfactant SDS. Mater. Chem. Phys. 2010, 123, 534–539. [Google Scholar] [CrossRef]
- Dong, L.; Yang, L.; Wang, Y.; Han, M. Free-standing crystalline CaCO3 films composed of three-dimensional microstructures with different morphologies. J. Cryst. Growth 2012, 343, 86–94. [Google Scholar] [CrossRef]
- Guo, H.; Qin, Z.; Qian, P.; Yu, P.; Cui, S.; Wang, W. Crystallization of aragonite CaCO3 with complex structures. Adv. Powder Technol. 2011, 22, 777–783. [Google Scholar] [CrossRef]
- Kubo, N.; Yamato, M. Drawing effect of poly (vinyl alcohol) on crystal growth of calcium carbonate. Chem. Lett. 2013, 42, 174–176. [Google Scholar] [CrossRef]
- Kim, I.W.; Robertson, R.E.; Zand, R. Effects of some nonionic polymeric additives on the crystallization of calcium carbonate. Cryst. Growth Design 2004, 5, 513–522. [Google Scholar] [CrossRef]
- JC/T973-2005. Natural Stone Protector for Building Decoration; National Development and Reform Commission of PRC: Beijing, China, 2005. [Google Scholar]
- Tokarský, J.; Martinec, P.; Kutláková, K.M.; Ovčačíková, H.; Študentová, S.; Ščučka, J. Photoactive and hydrophobic nano-ZnO/poly (alkyl siloxane) coating for the protection of sandstone. Constr. Build. Mater. 2019, 199, 549–559. [Google Scholar] [CrossRef]
- Shu, H.; Yang, M.; Liu, Q.; Luo, M. Study of TiO2 modified sol coating material in the protection of stone-built cultural heritage. Coatings 2020, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, Q.; Liu, T.; Zhang, B. The preservation damage of hydrophobic polymer coating materials in the conservation of stone relics. Prog. Org. Coat. 2013, 76, 1127–1134. [Google Scholar] [CrossRef]
- Miliani, C.; Velo-Simpson, M.L.; Scherer, G.W. Particle-modified consolidants: A study on the effect of particles on sol–gel properties and consolidation effectiveness. J. Cult. Herit. 2007, 8, 1–6. [Google Scholar] [CrossRef]
- Adavi, K.; Dehkordi, A.M. Synthesis and polymorph controlling of calcite and aragonite calcium carbonate nanoparticles in a confined impinging-jets reactor. Chem. Eng. Process.-Process Intensif. 2021, 159, 108239. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, L.; Li, Y.; Zhang, J. Controllable crystallization of pure vaterite using CO2 storage material and different Ca2+ sources. J. CO2 Util. 2021, 48, 101520. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Rovella, N.; Belfiore, C.M.; Palermo, A.M.; Guzzi, M.T.; Crisci, G.M. Multifunctional TiO2 coatings for cultural heritage. Prog. Org. Coat. 2012, 74, 186–191. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, D.; Zhang, Y.; Zhu, S.; Gan, X.; Liu, J. From nano-cubic particle to micro-spindle aggregation: The control of long-chain fatty acid on the morphology of calcium carbonate. Powder Technol. 2015, 270, 387–392. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.F.; Kong, D.T.; Liu, H.Q. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method. Nat. Gas Geosci. 2013, 24, 450–455. [Google Scholar]
- Silva, R.; Pereira, G.M.; Muniz, E.C.; Rubira, A.F. Calcium carbonate crystallization on a polyethylene surface containing ultrathin layers of hydrophilic polymers. Cryst. Growth Des. 2009, 9, 3307–3312. [Google Scholar] [CrossRef]
- Peruzzi, R.; Poli, T.; Toniolo, L. The experimental test for the evaluation of protective treatments: A critical survey of the “capillary absorption index”. J. Cult. Herit. 2003, 4, 251–254. [Google Scholar] [CrossRef]
- Hou, P.; Gao, F.; Gao, Y.; Yang, Y.; Cai, C. Changes in breakdown pressure and fracture morphology of sandstone induced by nitrogen gas fracturing with different pore pressure distributions. Int. J. Rock. Mech. Min. Sci. 2018, 109, 84–90. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M. Performances and coating morphology of a siloxane-based hydrophobic product applied in different concentrations on a highly porous stone. Coatings 2016, 6, 60. [Google Scholar] [CrossRef]
- Hidema, R.; Toyoda, T.; Suzuki, H.; Komoda, Y.; Shibata, Y. Adhesive behaviour of a calcium carbonate particle to solid walls having different hydrophilic characteristics. Int. J. Heat Mass Transf. 2016, 92, 603–609. [Google Scholar] [CrossRef]
- Jia, M.; He, L.; Liang, J.; Pan, A.; Zhao, L.; Simon, S. Dispersant effect on coatings of POSS-based poly methylmethacrylate hybrids and their protective performance to sandstones. Prog. Org. Coat. 2019, 132, 388–398. [Google Scholar] [CrossRef]
Sample Number | Stone Type | Coatings |
---|---|---|
B | Sandstone | Blank |
A | aragonite crystalline calcium carbonate | |
V | vaterite crystalline calcium carbonate |
Grade | Static Contact Angle θ/° | Wetting Effect |
---|---|---|
Ⅰ | θ ≤ 30° | super-hydrophilic |
Ⅱ | 30° < θ ≤ 90° | hydrophilic |
Ⅲ | 90° < θ ≤ 110° | hydrophobic |
Ⅳ | 110° < θ ≤ 130° | quitely hydrophobic |
Ⅴ | θ > 130° | super-hydrophobic |
Aragonite | 2θ | 26.3° | 27.3° | 33.1° | 36.3° | 37.9° | 38.5° | 42.9° | 45.9° | 48.4° |
---|---|---|---|---|---|---|---|---|---|---|
PDF76−0606 | Crystal planes | (111) | (021) | (012) | (102) | (112) | (130) | (122) | (221) | (202) |
Vaterite | 2θ | 26.3° | 25.0° | 27.1° | 32.8° | 43.8° | 49.1° | 49.9° | 55.7° | – |
PDF72−0506 | Crystal planes | (002) | (100) | (101) | (102) | (110) | (112) | (104) | (202) | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Qing, H.; Shu, H.; Liu, Q. Evaluating the Protective Effects of Calcium Carbonate Coating on Sandstone Cultural Heritage. Coatings 2021, 11, 1534. https://doi.org/10.3390/coatings11121534
Wen Y, Qing H, Shu H, Liu Q. Evaluating the Protective Effects of Calcium Carbonate Coating on Sandstone Cultural Heritage. Coatings. 2021; 11(12):1534. https://doi.org/10.3390/coatings11121534
Chicago/Turabian StyleWen, Yaping, Huoliang Qing, Hui Shu, and Qiang Liu. 2021. "Evaluating the Protective Effects of Calcium Carbonate Coating on Sandstone Cultural Heritage" Coatings 11, no. 12: 1534. https://doi.org/10.3390/coatings11121534
APA StyleWen, Y., Qing, H., Shu, H., & Liu, Q. (2021). Evaluating the Protective Effects of Calcium Carbonate Coating on Sandstone Cultural Heritage. Coatings, 11(12), 1534. https://doi.org/10.3390/coatings11121534