The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, H.M.; Mohamed, H.A.; Mohamed, S.H. Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique. Eur. Phys. J. Appl. Phys. 2005, 31, 87–93. [Google Scholar] [CrossRef]
- Ellmer, K.; Andreas, K.; Bernd, R. Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Hosono, H.; Ohta, H.; Orita, M.; Ueda, K.; Hirano, M. Frontier of transparent conductive oxide thin films. Vacuum 2002, 66, 419–425. [Google Scholar] [CrossRef]
- Stadlerh, A. Transparent conducting oxides—An up-to-date overview. Materials 2012, 5, 661–683. [Google Scholar] [CrossRef]
- Muchuweni, E.; Sathiaraj, T.S.; Nyakotyo, H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 2017, 3, e00285. [Google Scholar] [CrossRef]
- Ismail, A.; Abdullah, M.J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King Saud Univ. Sci. 2013, 25, 209–215. [Google Scholar] [CrossRef]
- Faÿ, S.; Kroll, U.; Bucher, C.; Vallat-Sauvain, E.; Shah, A. Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: Temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells 2005, 86, 385–397. [Google Scholar] [CrossRef]
- Silva, É.P.; Chaves, M.; Durrant, S.F.; Lisboa-Filho, P.N.; Bortoleto, J.R.R. Morphological and electrical evolution of ZnO:Al thin films deposited by RF magnetron sputtering onto glass substrates. Mater. Res. 2014, 17, 1384–1390. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, H.; Kim, D.Y.; Kim, S.; Leem, J.Y. Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Opt. Mater. 2013, 35, 2418–2424. [Google Scholar] [CrossRef]
- Smirnov, M.; Baban, C.; Rusu, G.I. Structural and optical characteristics of spin-coated ZnO thin films. Appl. Surf. Sci. 2010, 256, 2405–2408. [Google Scholar] [CrossRef]
- Wenas, W.W.; Yamada, A.; Takahashi, K. Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition. J. Appl. Phys. 1991, 70, 7119–7123. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, R.; Kumar, A. ZnO thin films: Chemical vapour deposition, growth and functional properties. Rev. Adv. Sci. Eng. 2016, 5, 150–160. [Google Scholar] [CrossRef]
- Lontino Fomekong, R.; Saruhan, B. Influence of humidity on NO2-sensing and selectivity of spray-CVD grown ZnO thin film above 400 °C. Chemosensors 2019, 7, 42. [Google Scholar] [CrossRef]
- Petrella, A.J.; Deng, H.; Roberts, N.K.; Lamb, R.N. Single-source chemical vapor deposition growth of ZnO thin films using Zn4O(CO2NEt2)6. Chem. Mater. 2002, 14, 4339–4342. [Google Scholar] [CrossRef]
- Hamelmann, F.U. Thin film zinc oxide deposited by CVD and PVD. J. Phys. Conf. Ser. 2016, 764, 012001. [Google Scholar] [CrossRef]
- Fouad, O.A.; Ismail, A.A.; Zaki, Z.I.; Mohamed, R.M. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Appl. Catal. B Environ. 2006, 62, 144–149. [Google Scholar] [CrossRef]
- Bensmaine, S.; Benyoucef, B. Effect of the temperature on ZnO thin films deposited by r.f. magnetron. Phys. Procedia 2014, 55, 144–149. [Google Scholar] [CrossRef][Green Version]
- Jimenez-Cadena, G.; Comini, E.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Synthesis of different ZnO nanostructures by modified PVD process and potential use for 1dye-sensitized solar cells. Mater. Chem. Phys. 2010, 124, 694–698. [Google Scholar] [CrossRef]
- Wu, H.W.; Yang, R.Y.; Hsiung, C.M.; Chu, C.H. Characterization of aluminum-doped zinc oxide thin films by RF magnetron sputtering at different substrate temperature and sputtering power. J. Mater. Sci. Mater. Electron. 2013, 41, 166–171. [Google Scholar] [CrossRef]
- Muchuweni, E.; Sathiaraj, T.S.; Nyakotyo, H. Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power. Ceram. Int. 2016, 42, 17706–17710. [Google Scholar] [CrossRef]
- Assunção, V.; Fortunato, E.; Marques, A.; Águas, H.; Ferreira, I.; Costab, M.E.V.; Martins, R. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films 2003, 427, 401–405. [Google Scholar] [CrossRef]
- Boryło, P.; Matus, K.; Lukaszkowicz, K.; Kubacki, J.; Balin, K.; Basiaga, M.; Szindler, M.; Mikuła, J. The influence of atomic layer deposition proces temperaturę on ZnO. Appl. Surf. Sci. 2019, 474, 177–186. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Thangavel, R.; Moirangthem, R.S.; Lee, W.S.; Chang, Y.C.; Weia, P.K.; Kumar, J. Cesium doped and undoped ZnO nanocrystalline thin films: A comparative study of structural and micro-Raman investigation of optical phonons. J. Raman Spectrosc. 2010, 41, 1594–1600. [Google Scholar] [CrossRef]
- Jothilakshmi, R.; Ramakrishnan, V.; Thangavel, R.; Kumar, J.; Saruac, A.; Kuball, M. Micro-Raman scattering spectroscopy study of Li-doped and undoped ZnO needle crystals. J. Raman Spectrosc. 2009, 40, 556–561. [Google Scholar] [CrossRef]
- Paul, S.; Harris, P.G.; Pal, C.; Sharma, A.K.; Ray, A.K. Low cost zinc oxide for memristors with high On–Off ratios. Mater. Lett. 2014, 130, 40–42. [Google Scholar] [CrossRef]
- Cho, S. Effects of growth temperature on the properties of ZnO thin films grown by radio-frequency magnetron sputtering. Trans. Electr. Electron. Mater. 2009, 10, 185–188. [Google Scholar] [CrossRef]
- Yang, W.; Wang, F.; Guan, Z.; He, P.; Liu, Z.; Hu, L.; Chen, M.; Zhang, C.; He, X.; Fu, Y. Comparative study of ZnO thin grown on quartz glass and sapphire (001) substrates by means of magnetron sputtering and high-temperature annealing. Appl. Sci. 2019, 9, 4509. [Google Scholar] [CrossRef]
- Chaabouni, F.; Abaab, M.; Rezig, B. Effect of the substrate temperature on the properties of ZnO films grown by RF magnetron sputtering. Mater. Sci. Eng. B 2004, 109, 236–240. [Google Scholar] [CrossRef]













| Process Temperature | Spectroscopic Ellipsometry (nm) | Scanning Microscopy (nm) |
|---|---|---|
| 100 °C | 195 | 191 |
| 200 °C | 197 | 194 |
| 300 °C | 207 | 205 |
| Process Temperature | Rq (nm) | Ra (nm) |
|---|---|---|
| 100 °C | 3.38 | 3.10 |
| 200 °C | 4.42 | 3.39 |
| 300 °C | 4.49 | 3.57 |
| Process Temperature | 2θ (°) | Crystallite Size, D (nm) |
|---|---|---|
| 100 °C | 39.75 | 49 |
| 200 °C | 39.95 | 51 |
| 300 °C | 39.95 | 62 |
| Process Temperature | Optical Energy Bandgap, Eg (eV) |
|---|---|
| 100 °C | 3.64 |
| 200 °C | 3.62 |
| 300 °C | 3.56 |
| Process Temperature | Critical Load LC1 (N) | Critical Load LC2 (N) |
|---|---|---|
| 100 °C | 3.7 | 17.7 |
| 200 °C | 7.4 | 22.6 |
| 300 °C | 16.6 | 26.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaim, P.; Lukaszkowicz, K.; Szindler, M.; Szindler, M.M.; Basiaga, M.; Hajduk, B. The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties. Coatings 2021, 11, 1507. https://doi.org/10.3390/coatings11121507
Kaim P, Lukaszkowicz K, Szindler M, Szindler MM, Basiaga M, Hajduk B. The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties. Coatings. 2021; 11(12):1507. https://doi.org/10.3390/coatings11121507
Chicago/Turabian StyleKaim, Paulina, Krzysztof Lukaszkowicz, Marek Szindler, Magdalena M. Szindler, Marcin Basiaga, and Barbara Hajduk. 2021. "The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties" Coatings 11, no. 12: 1507. https://doi.org/10.3390/coatings11121507
APA StyleKaim, P., Lukaszkowicz, K., Szindler, M., Szindler, M. M., Basiaga, M., & Hajduk, B. (2021). The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties. Coatings, 11(12), 1507. https://doi.org/10.3390/coatings11121507

