RETRACTED: Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Sample Characterizations
2.4. Photocatalytic Activity of the Samples
3. Results
3.1. Structural and Morphological Analysis
3.2. FTIR Spectroscopy Analysis
3.3. Evaluation of Optical Bandgap
3.4. Study of Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv. 2014, 4, 3823–3851. [Google Scholar] [CrossRef]
- Quan, Q.; Lin, X.; Zhang, N.; Xu, Y.-J. Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale 2017, 9, 2398–2416. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Wang, G.-Q.; Li, W.-H.; Li, T.-T.; Ji, G.-J.; Ren, S.-C.; Jiang, M.; Yan, L.; Tang, H.-T.; Pan, Y.-M.; et al. Porous ligand creates new reaction route: Bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 2020, 6, 2300–2313. [Google Scholar] [CrossRef]
- Ahmad, A.; Jini, D.; Aravind, M.; Parvathiraja, C.; Ali, R.; Kiyani, M.Z.; Alothman, A. A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arab. J. Chem. 2020, 13, 8717–8722. [Google Scholar] [CrossRef]
- Aravind, M.; Ahmad, A.; Ahmad, I.; Amalanathan, M.; Naseem, K.; Mary, S.M.M.; Parvathiraja, C.; Hussain, S.; Algarni, T.S.; Pervaiz, M. Critical green routing synthesis of silver nps using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104877. [Google Scholar] [CrossRef]
- Pervaiz, M.; Ahmad, I.; Yousaf, M.; Kirn, S.; Munawar, A.; Saeed, Z.; Adnan, A.; Gulzar, T.; Kamal, T.; Ahmad, A. Synthesis, spectral and antimicrobial studies of amino acid derivative schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 642–649. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, A.J.; Arshad, M.; Javed, M.S.; Ahmad, A.; Shah, S.S.A.; Khan, M.R.; Akram, S.; Ali, S.; ALOthman, Z.A. Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors. Ceram. Int. 2021, 47, 8659–8667. [Google Scholar] [CrossRef]
- Zhan, M.; Hussain, S.; AlGarni, T.S.; Shah, S.; Liu, J.; Zhang, X.; Ahmad, A.; Javed, M.S.; Qiao, G.; Liu, G. Facet controlled polyhedral ZIF-8 MOF nanostructures for excellent NO2 gas-sensing applications. Mater. Res. Bull. 2021, 136, 111133. [Google Scholar] [CrossRef]
- Kashif, M.; Ngaini, Z.; Harry, A.V.; Vekariya, R.L.; Ahmad, A.; Zuo, Z.; Sahari, S.K.; Hussain, S.; Khan, Z.A.; Alarifi, A. An experimental and dft study on novel dyes incorporated with natural dyes on titanium dioxide (TiO2) towards solar cell application. Appl. Phys. A 2020, 126, 1–13. [Google Scholar] [CrossRef]
- Saleem, M.; Irfan, M.; Tabassum, S.; Albaqami, M.D.; Javed, M.S.; Hussain, S.; Pervaiz, M.; Ahmad, I.; Ahmad, A.; Zuber, M. Experimental and theoretical study of highly porous lignocellulose assisted metal oxide photoelectrodes for dye-sensitized solar cells. Arab. J. Chem. 2021, 14, 102937. [Google Scholar] [CrossRef]
- Kashif, M.; Jaafar, E.; Bhadja, P.; Low, F.W.; Sahari, S.K.; Hussain, S.; Loong, F.K.; Ahmad, A.; AlGarni, T.S.; Shafa, M. Effect of potassium permanganate on morphological, structural and electro-optical properties of graphene oxide thin films. Arab. J. Chem. 2021, 14, 102953. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Xu, P.H.; Liu, G.W.; Ahmad, A.; Chen, X.H.; Zhu, Y.L.; Alothman, A.; Hussain, S.; Qiao, G.J. Synthesis, characterization and wettability of cu-sn alloy on the si-implanted 6h-sic. Coatings 2020, 10, 906. [Google Scholar] [CrossRef]
- Fallah, Z.; Zare, E.N.; Ghomi, M.; Ahmadijokani, F.; Amini, M.; Tajbakhsh, M.; Arjmand, M.; Sharma, G.; Ali, H.; Ahmad, A. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere 2021, 275, 130055. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Ahmad, A.; Anjum, M.A.R.; Haleem, A.; Siddiq, M.; Shah, S.S.; Al Kahtani, A. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rgo) based metal oxides (rgo-Fe3O4/TiO2) nanocomposite under uv-visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105580. [Google Scholar] [CrossRef]
- Ahmad, I.; Jamal, M.A.; Iftikhar, M.; Ahmad, A.; Hussain, S.; Asghar, H.; Saeed, M.; Yousaf, A.B.; Karri, R.R.; Al-kadhi, N.S. Lanthanum-zinc binary oxide nanocomposite with promising heterogeneous catalysis performance for the active conversion of 4-nitrophenol into 4-aminophenol. Coatings 2021, 11, 537. [Google Scholar] [CrossRef]
- Javed, M.S.; Khan, A.J.; Ahmad, A.; Siyal, S.H.; Akram, S.; Zhao, G.; Bahajjaj, A.A.A.; Ouladsmane, M.; Alfakeer, M. Design and fabrication of bimetallic oxide nanonest-like structure/carbon cloth composite electrode for supercapacitors. Ceram. Int. 2021, 47, 30747–30755. [Google Scholar] [CrossRef]
- Javed, M.S.; Najim, T.; Hussain, I.; Batool, S.; Idrees, M.; Mehmood, A.; Imran, M.; Assiri, M.A.; Ahmad, A.; Shah, S.S.A. 2D V2O5 ultrathin nanoflakes as a binder-free electrode material for high-performance pseudocapacitor. Ceram. Int. 2021, 47, 25152–25157. [Google Scholar] [CrossRef]
- Beena, V.; Rayar, S.; Ajitha, S.; Ahmad, A.; Albaqami, M.D.; Alsabar, F.A.A.; Sillanpää, M. Synthesis and characterization of sr-doped znse nanoparticles for catalytic and biological activities. Water 2021, 13, 2189. [Google Scholar] [CrossRef]
- Siyal, S.H.; Javed, M.S.; Ahmad, A.; Sajjad, M.; Batool, S.; Khan, A.J.; Akram, S.; Alothman, A.A.; Alshgari, R.A.; Najam, T. Free-standing 3D Co3O4@ nf micro-flowers composed of porous ultra-long nanowires as an advanced cathode material for supercapacitor. Curr. Appl. Phys. 2021, 31, 221–227. [Google Scholar] [CrossRef]
- Syah, R.; Ahmad, A.; Davarpanah, A.; Elveny, M.; Ramdan, D.; Albaqami, M.D.; Ouladsmane, M. Incorporation of Bi2O3 residuals with metallic Bi as high performance electrocatalyst toward hydrogen evolution reaction. Catalysts 2021, 11, 1099. [Google Scholar] [CrossRef]
- Abbas, Q.; Javed, M.S.; Ahmad, A.; Siyal, S.H.; Asim, I.; Luque, R.; Albaqami, M.D.; Tighezza, A.M. Zno nano-flowers assembled on carbon fiber textile for high-performance supercapacitor’s electrode. Coatings 2021, 11, 1337. [Google Scholar] [CrossRef]
- Bibi, S.; Khan, A.; Khan, S.; Ahmad, A.; Sakhawat Shah, S.; Siddiq, M.; Iqbal, A.; Al-Kahtani, A.A. Synthesis of cr doped limnpo4 cathode materials and investigation of their dielectric properties. Int. J. Energy Res. 2021, 2021, 1–12. [Google Scholar]
- Raees, A.; Jamal, M.; Ahmad, A.; Ahmad, I.; Saeed, M.; Habila, M.; AlMasoud, N.; Alomar, T. Synthesis and characterization of ceria incorporated nickel oxide nanocomposite for promising degradation of methylene blue via photocatalysis. Int. J. Environ. Sci. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Beena, V.; Rayar, S.; Ajitha, S.; Ahmad, A.; Iftikhar, F.J.; Abualnaja, K.M.; Alomar, T.S.; Ouladsmne, M.; Ali, S. Photocatalytic dye degradation and biological activities of cu-doped znse nanoparticles and their insights. Water 2021, 13, 2561. [Google Scholar] [CrossRef]
- Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; et al. Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi (B) 2012, 249, 1487–1509. [Google Scholar] [CrossRef]
- Masudy-Panah, S.; Kakran, M.; Lim, Y.-F.; Chua, C.S.; Tan, H.R.; Dalapati, G.K. Graphene nanoparticle incorporated CuO thin film for solar cell application. J. Renew. Sustain. Energy 2016, 8, 43507. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Wang, T.; Yang, Z.; Zou, X.; Wang, P.; Luo, W.; Li, Q.; Liao, L.; Hu, W.; et al. Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 2019, 11, 33188–33193. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, Y.; Wang, W.-P.; Zhang, X.; Peng, W. CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 2015, 156, 244–251. [Google Scholar] [CrossRef]
- Li, Y.; Macdonald, D.D.; Yang, J.; Qiu, J.; Wang, S. Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics. Corros. Sci. 2020, 163, 108280. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, G.H.; Lee, S.; Kim, J.C.; Lee, H.J.; Kim, B.K.; Kim, D.W. Electrocatalytic performance of CuO/graphene nanocomposites for Li–O2 batteries. J. Alloys Compd. 2017, 707, 275–280. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, F.; Song, X.; Tang, Y. A novel potassium-ion-based dual-ion battery. Adv. Mater. 2017, 29, 1700519. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Oh, H.; Han, S.-W.; Ahn, S.; Noh, J.; Park, J.B. Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Curr. Appl. Phys. 2017, 17, 137–145. [Google Scholar] [CrossRef]
- Pandiyarajan, T.; Saravanan, R.; Karthikeyan, B.; Gracia, F.; Mansilla, H.D.; Gracia-Pinilla, M.A.; Mangalaraja, R.V. Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. J. Mater. Sci. Mater. Electron. 2017, 28, 2448–2457. [Google Scholar] [CrossRef]
- Sharma, A.; Dutta, R.K. Studies on the drastic improvement of photocatalytic degradation of acid orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents. RSC Adv. 2015, 5, 43815–43823. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahmaruzzaman, M. CuO nanostructures: Facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Adv. 2016, 6, 41348–41363. [Google Scholar] [CrossRef]
- Liu, R.; Yin, J.; Du, W.; Gao, F.; Fan, Y.; Lu, Q. Monodisperse CuO hard and hollow nanospheres as visible-light photocatalysts. Eur. J. Inorg. Chem. 2013, 2013, 1358–1362. [Google Scholar] [CrossRef]
- Arshad, A.; Iqbal, J.; Siddiq, M.; Ali, M.U.; Ali, A.; Shabbir, H.; Nazeer, U.B.; Saleem, M.S. Solar light triggered catalytic performance of graphene-CuO nanocomposite for waste water treatment. Ceram. Int. 2017, 43, 10654–10660. [Google Scholar] [CrossRef]
- Park, K.-W.; Sung, Y.-E.; Han, S.; Yun, Y.; Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 939–944. [Google Scholar] [CrossRef]
- Li, X.; Shi, T.; Li, B.; Chen, X.; Zhang, C.; Guo, Z.; Zhang, Q. Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance. Mater. Des. 2019, 183, 108152. [Google Scholar] [CrossRef]
- Cheng, J.-Z.; Tan, Z.-R.; Xing, Y.-Q.; Shen, Z.-Q.; Zhang, Y.-J.; Liu, L.-L.; Yang, K.; Chen, L.; Liu, S.-Y. Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 5787–5795. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.X.; Liu, X.Y.; Ma, Z.H.; Yin, Z.Y.; Yang, W.W.; Yu, Y.S. Schiff-base-rich gCxN4 supported PdAg nanowires as an efficient Mott–Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 2021, 40, 808–816. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.; Kaner, R.B. Honeycomb Carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew Chem. Int. Ed. 2009, 48, 7752–7777. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L.V.; Zhang, J.; et al. Self-Assembled TiO2–Graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914. [Google Scholar] [CrossRef]
- Sheng, M.; Zhang, F.; Ji, B.; Tong, X.; Tang, Y. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 2017, 7, 1601963. [Google Scholar] [CrossRef]
- Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259. [Google Scholar] [CrossRef]
- Wang, X.; Zhi, L.; Tsao, H.N.; Tomović, Ž.; Li, J.; Müllen, K. Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed. 2008, 47, 2990–2992. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, C. Hydrothermal synthesis of 3D NixCo1−xS2 particles/graphene composite hydrogels for high performance supercapacitors. Carbon 2015, 90, 44–52. [Google Scholar] [CrossRef]
- Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X.; Chen, G.N. A graphene platform for sensing biomolecules. Angew. Chem. 2009, 121, 4879–4881. [Google Scholar] [CrossRef]
- Wang, H.; Robinson, J.T.; Diankov, G.; Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271. [Google Scholar] [CrossRef]
- Lv, B.-J.; Wang, S.; Xu, T.-W.; Guo, F. Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg–6.0Zn–0.5Mn alloy. J. Magnes. Alloy. 2020, 9, 840–852. [Google Scholar] [CrossRef]
- Li, X.; Sheng, X.; Guo, Y.; Lu, X.; Wu, H.; Chen, Y.; Zhang, L.; Gu, J. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171–179. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Belokopytova, L.V.; Grachev, A.M.; Meko, D.; Vaganov, E.A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Chang. 2017, 17, 1725–1737. [Google Scholar] [CrossRef]
- Anwar, A.W.; Majeed, A.; Iqbal, N.; Ullah, W.; Shuaib, A.; Ilyas, U.; Bibi, F.; Rafique, H.M. Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: A review. J. Mater. Sci. Technol. 2015, 31, 699–707. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef]
- Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C.W.; Velamakanni, A.; Piner, R.D.; et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327. [Google Scholar] [CrossRef]
- Goli, P.; Ning, H.; Li, X.; Lu, C.Y.; Novoselov, K.S.; Balandin, A.A. Thermal properties of graphene–copper–graphene heterogeneous films. Nano Lett. 2014, 14, 1497–1503. [Google Scholar] [CrossRef]
- Udayabhaskar, R.; Mangalaraja, R.; Sahlevani, S.F.; Perarasu, V.; Karthikeyan, B.; Contreras, D.; Gracia-Pinilla, M. Graphene induced band gap widening and luminescence quenching in ceria:graphene nanocomposites. J. Alloys Compd. 2019, 770, 1221–1228. [Google Scholar] [CrossRef]
- Lu, Z.-Q.; Zhao, L.; Ding, H.; Chen, L.-Q. A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 2021, 509, 116251. [Google Scholar] [CrossRef]
- Zhu, H.; An, Y.; Shi, M.; Li, Z.; Chen, N.; Yang, C.; Xiao, P. Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors. Mater. Lett. 2021, 296, 129837. [Google Scholar] [CrossRef]
- Suresh, R.; Udayabhaskar, R.; Sandoval, C.; Ramírez, E.; Mangalaraja, R.V.; Mansilla, H.D.; Contreras, D.; Yáñez, J. Effect of reduced graphene oxide on the structural, optical, adsorption and photocatalytic properties of iron oxide nanoparticles. New J. Chem. 2018, 42, 8485–8493. [Google Scholar] [CrossRef]
- Tian, Y.; Lin, L.; Chen, S.; Zhu, S.; Zhang, H.; Yu, W.; Ning, H.; Hu, N. Defects engineering of Fe2O3@Sn2O3 nanosheet arrays for high-performance hybrid supercapacitor. J. Energy Storage 2021, 42, 103123. [Google Scholar] [CrossRef]
- Aadil, M.; Shaheen, W.; Warsi, M.F.; Shahid, M.; Khan, M.A.; Ali, Z.; Haider, S.; Shakir, I. Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. J. Alloys Compd. 2016, 689, 648–654. [Google Scholar] [CrossRef]
- Mohan, B.S.; Ravi, K.; Anjaneyulu, R.B.; Sree, G.S.; Basavaiah, K. Fe2O3/RGO nanocomposite photocatalyst: Effective degradation of 4-Nitrophenol. Phys. B Condens. Matter 2019, 553, 190194. [Google Scholar] [CrossRef]
- Wang, B.; Wu, X.-L.; Shu, C.-Y.; Guo, Y.-G.; Wang, C.-R. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 10661–10664. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, M.; Yuan, Y.; Wu, Q.; Wang, H.; He, Y.; Lin, Z.; Zhou, F.; Ling, M.; Qian, C.; et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage. Adv. Funct. Mater. 2020, 30, 1910249. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, L.; Wu, B.; Hu, N. Vertical carbon skeleton introduced three-dimensional MnO2 nanostructured composite electrodes for high-performance asymmetric supercapacitors. J. Power Sources 2020, 476, 228527. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, K.; Bai, H.; Li, L. Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator. J. Mater. Chem. 2012, 22, 17800–17804. [Google Scholar] [CrossRef]
- Ghijsen, J.; Tjeng, L.H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G.A.; Czyzyk, M.T. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322–11330. [Google Scholar] [CrossRef]
- Wang, J.; Li, F.; Xu, M. Synthesis and Characterization of Nanoscale CuO Powders. In Proceedings of the 55th International Convention of Society of Wood Science and Technology, Beijing, China, 27–31 August 2012. [Google Scholar]
- Sarkar, C.; Dolui, S.K. Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. RSC Adv. 2015, 5, 60763–60769. [Google Scholar] [CrossRef]
- Yusoff, N. Synthesis of Functionalized Graphene/Copper Oxide (CuO) Nanocomposites and Their Catalytic Activity/NORAZRIENA Binti Yusoff. Ph.D. Thesis, University of Malaya, Lumpur, Malaya, 2013. [Google Scholar]
- Erdoğan, İ.Y.; Güllü, Ö. Optical and structural properties of CuO nanofilm: Its diode application. J. Alloys Compd. 2010, 492, 378–383. [Google Scholar] [CrossRef]
- Jadhav, M.S.; Kulkarni, S.; Raikar, P.; Barretto, D.A.; Vootla, S.K.; Raikar, U.S. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J. Chem. 2018, 42, 204–213. [Google Scholar] [CrossRef]
- El-Trass, A.; ElShamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 2012, 258, 2997–3001. [Google Scholar] [CrossRef]
- Muhamad, E.N.; Irmawati, R.; Abdullah, A.H.; Taufiq-Yap, Y.H.; Hamid, S.A. Effect of number of washing on the characteristics of copper oxide nanopowders. Malays. J. Anal. Sci. 2007, 11, 294–301. [Google Scholar]
- Sabeeh, S.H.; Hussein, H.A.; Judran, H.K. Synthesis of a complex nanostructure of CuO via a coupled chemical route. Mater. Res. Express 2016, 3, 125025. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2−graphene truly different from other TiO2−carbon composite materials? ACS Nano 2010, 4, 7303–7314. [Google Scholar] [CrossRef]
- Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908–4911. [Google Scholar] [CrossRef]
- Manickathai, K.; Viswanathan, S.K.; Alagar, M. Synthesis and characterization of CdO and CdS nanoparticles. IJPAP 2008, 46, 561–564. [Google Scholar]
- Pouretedal, H.; Kadkhodaie, A. Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: Kinetics and mechanism. Chin. J. Catal. 2010, 31, 1328–1334. [Google Scholar] [CrossRef]
- Ramesha, G.; Kumara, A.V.; Muralidhara, H.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 2011, 361, 270–277. [Google Scholar] [CrossRef]
- Yang, S.-T.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.; Wang, H. Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2011, 359, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 2012, 90, 197–203. [Google Scholar] [CrossRef]
- Akhavan, O.; Azimirad, R.; Safa, S.; Hasani, E. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 2011, 21, 9634–9640. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.-Y.; Rooke, J.; Van Tendeloo, G.; Su, B.-L. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J. Colloid Interface Sci. 2010, 348, 303–312. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Graetzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95, 49–68. [Google Scholar] [CrossRef]
Component | Chemical Formula | CAS Number | Molar Mass (g/mol) | Supplier | Purity |
---|---|---|---|---|---|
Copper (II) Acetate | Cu (CH3COO)2 | 6046-93-1 | 199.65 | Merck | 99.99% |
Cetyl trimethyl ammonium bromide | C19H42BrN | 57-09-0 | 364.45 | Merck | 99.99% |
Sodium hydroxide | NaOH | 1310-73-2 | 40 | Merck | 99.99% |
Ethanol | C2H5OH | 64-17-5 | 46.07 | Merck | 99.99% |
Methylene blue | C16H18ClN3S | 61-73-4 | 319.85 | Sigma-Aldrich | 95% |
Graphene | C | 1034343-98-0 | 12.01 | US Research Nanomaterials, Inc. | 95% |
Sample | |||||||
---|---|---|---|---|---|---|---|
CuO | CuO-2.5G | CuO-5G | CuO-10 | ||||
2θ | Plane | 2θ | Plane | 2θ | Plane | 2θ | Plane |
32.47 | 110 | 26.67 | 002 | 26.67 | 002 | 26.67 | 002 |
35.61 | 32.47 | 001 | 32.47 | 001 | 32.47 | ||
35.82 | 111 | 35.61 | 35.61 | 35.61 | 111 | ||
49.04 | 35.82 | 35.82 | - | - | |||
58.51 | 202 | 38.85 | 020 | 38.85 | 020 | - | - |
61.79 | 49.04 | 202 | 49.04 | 202 | - | - | |
66.22 | 022 | 53.72 | 53.72 | - | - | ||
68.27 | 220 | 58.51 | 022 | 58.51 | 022 | - | - |
--- | --- | 61.79 | 220 | 61.79 | 220 | - | - |
--- | --- | 66.22 | 311 | 66.22 | 311 | - | - |
--- | --- | 68.27 | 68.27 | - | - |
Sample | Average Crystallite Size | |
---|---|---|
CuO | Graphene | |
CuO | 8.46 | 0.00 |
CuO-2.5G | 10.32 | 15.40 |
CuO-5G | 10.19 | 20.98 |
CuO-10G | 12.47 | 26.02 |
Sample | Average Grain Diameter |
---|---|
CuO | 31.95 |
CuO-2.5G | 28.92 |
CuO-5G | 20.11 |
CuO-10G | 40.85 |
Sample | Element | Weight Percentage (%) | Atomic Percentage (%) | Error (%) |
---|---|---|---|---|
CuO | O | 30.78 | 63.30 | 21.18 |
Cu | 69.22 | 36.70 | 1.04 | |
CuO-2.5G | C | 25.44 | 50.22 | 10.66 |
O | 17.39 | 27.58 | 10.66 | |
Cu | 57.17 | 22.20 | 0.84 | |
CuO-5G | C | 59.06 | 76.20 | 13.94 |
O | 18.52 | 19.02 | 13.94 | |
Cu | 22.42 | 4.78 | 0.73 | |
CuO-10G | C | 47.22 | 62.27 | 14.14 |
O | 33.66 | 33.15 | 14.14 | |
Cu | 19.12 | 4.58 | 0.60 |
CuO-10G | CuO-5G | CuO-2.5G | ||||||
---|---|---|---|---|---|---|---|---|
Reference | Vibraton Mode | k (cm−1) | Reference | Vibraton Mode | k (cm−1) | Reference | Vibraton Mode | k (cm−1) |
[75] | Cu–O | 517 | [75] | Cu-O | 520 | [75] | Cu–O | 506 |
[76] | C=O | 724 | [76] | Cu-O | 590 | [76] | Cu–O | 593 |
[77] | C–C | 804 | [77] | C=O | 728 | [78] | C=O | 1410 |
[75] | C=O | 907 | [75] | C=O | 910 | [78] | C=O | 1470 |
[76] | C=O | 952 | [76] | C=O | 960 | [79] | C–O | 1573 |
[78] | C–O–C | 1022 | [78] | C=O | 1410 | [78] | C=O | 2364 |
[78] | C=O | 1410 | [78] | C=O | 1470 | [80] | C=O | 2840 |
[79] | C=O | 1478 | [79] | C-O | 1570 | [80] | C–H | 2919 |
[78] | C–O | 1564 | [78] | C=H | 2862 | [80] | O–H | 3433 |
[80] | O–H | 1641 | [80] | C-H | 2840 | - | - | - |
[80] | C=O | 2365 | [80] | C-H | 2919 | - | - | - |
[80] | C–H | 2917 | [80] | O-H | 3410 | - | - | - |
[80] | O–H | 3436 | - | - | - | - | - | - |
Sample | Optical Bandgap Energy (±0.01 eV) |
---|---|
CuO | 1.41 |
CuO-2.5G | 1.29 |
CuO-5G | 1.20 |
CuO-10G | 1.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raya, I.; Ahmad, A.; Alkaim, A.F.; Bokov, D.; Alwaily, E.R.; Luque, R.; Alsaiari, M.; Jalalah, M. RETRACTED: Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites. Coatings 2021, 11, 1452. https://doi.org/10.3390/coatings11121452
Raya I, Ahmad A, Alkaim AF, Bokov D, Alwaily ER, Luque R, Alsaiari M, Jalalah M. RETRACTED: Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites. Coatings. 2021; 11(12):1452. https://doi.org/10.3390/coatings11121452
Chicago/Turabian StyleRaya, Indah, Awais Ahmad, Ayad F. Alkaim, Dmitry Bokov, Enas R. Alwaily, Rafael Luque, Mabkhoot Alsaiari, and Mohammed Jalalah. 2021. "RETRACTED: Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites" Coatings 11, no. 12: 1452. https://doi.org/10.3390/coatings11121452
APA StyleRaya, I., Ahmad, A., Alkaim, A. F., Bokov, D., Alwaily, E. R., Luque, R., Alsaiari, M., & Jalalah, M. (2021). RETRACTED: Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites. Coatings, 11(12), 1452. https://doi.org/10.3390/coatings11121452