Characterization of YSZ Coatings Deposited on cp-Ti Using the PS-PVD Method for Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surfaces and Cross-Section Properties of Coatings
3.2. Mechanical Properties of Deposited Coatings
3.3. Corrosion Test
3.4. Viability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazek-Kȩsik, A.; Krok-Borkowicz, M.; Pamuła, E.; Simka, W. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation. Mater. Sci. Eng. C 2014, 43, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, L.C.; Duarte, L.T.; da Silva, P.S.C.P.; Bolfarini, C. Fatigue behavior of modified surface of Ti-6Al-7Nb and CP-Ti by micro-arc oxidation. Mater. Des. 2014, 64, 393–399. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Santos, P.F.; Niinomi, M.; Cho, K.; Nakai, M.; Liu, H.; Ohtsu, N.; Hirano, M.; Ikeda, M.; Narushima, T. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications. Acta Biomater. 2015, 26, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Torrent, F.; Lavisse, L.; Berger, P.; Pillon, G.; Lopes, C.; Vaz, F.; Marco de Lucas, M.C. Influence of the composition of titanium oxynitride layers on the fretting behavior of functionalized titanium substrates: PVD films versus surface laser treatments. Surf. Coat. Technol. 2014, 255, 146–152. [Google Scholar] [CrossRef]
- Lisiecki, A.; Piwnik, J. Tribological characteristic of titanium alloy surface layers produced by diode laser gas nitriding. Arch. Metall. Mater. 2016, 61, 543–552. [Google Scholar] [CrossRef]
- Cheng, M.; Qiao, Y.; Wang, Q.; Jin, G.; Qin, H.; Zhao, Y.; Peng, X.; Zhang, X.; Liu, X. Calcium Plasma Implanted Titanium Surface with Hierarchical Microstructure for Improving the Bone Formation. ACS Appl. Mater. Interfaces 2015, 7, 13053–13061. [Google Scholar] [CrossRef]
- Soboyejo, W.O.; Mercer, C.; Allameh, S.; Nemetski, B.; Marcantonio, N.; Ricci, J.L. Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces. Key Eng. Mater. 2001, 199, 203–230. [Google Scholar] [CrossRef]
- Xie, Y.; Zheng, X.; Huang, L.; Ding, C. Influence of hierarchical hybrid micro/nano-structured surface on biological performance of titanium coating. J. Mater. Sci. 2012, 47, 1411–1417. [Google Scholar] [CrossRef]
- Choy, M.T.; Yeung, K.W.; Chen, L.; Tang, C.Y.; Tsui, G.C.P.; Law, W.C. In situ synthesis of osteoconductive biphasic ceramic coatings on Ti6Al4V substrate by laser-microwave hybridization. Surf. Coat. Technol. 2017, 330, 92–101. [Google Scholar] [CrossRef]
- Hamdi, D.A. Investigation the properties of hip implantation structure based on nanotechnology by using radio frequency magnetron sputtering. Int. J. Energy Environ. 2017, 6, 515–522. [Google Scholar]
- Cai, Y.; Quan, X.; Li, G.; Gao, N. Anticorrosion and Scale Behaviors of Nanostructured ZrO2 -TiO2 Coatings in Simulated Geothermal Water. Ind. Eng. Chem. Res. 2016, 55, 11480–11494. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Valkov, S.; Parshorov, S.; Yankov, E.; Petrov, P. Biomineralization of titanium alloy with surface micro- and nanoscaled modifications. Key Eng. Mater. 2019, 813, 165–170. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.; Lin, Z.; Lin, H.; Zhang, Z.; Li, W.; Yang, X.; Cui, J. Ti-Based Biomedical Material Modified with TiOx/TiNx Duplex Bioactivity Film via Micro-Arc Oxidation and Nitrogen Ion Implantation. Nanomaterials 2017, 7, 343. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Kure-Chu, S.Z.; Sun, Z.; Matsubara, T.; Tang, G.; Hihara, T.; Okido, M.; Yashiro, H. Self-lubricated nanoporous TiO2-TiN films fabricated on nanocrystalline layer of titanium with enhanced tribological properties. Surf. Coat. Technol. 2018, 351, 162–170. [Google Scholar] [CrossRef]
- Richard, C.; Kowandy, C.; Landoulsi, J.; Geetha, M.; Ramasawmy, H. Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure Titanium and Ti-13Nb-13Zr substrates. Int. J. Refract. Met. Hard Mater. 2010, 28, 115–123. [Google Scholar] [CrossRef]
- Piconi, C.; Burger, W.; Richter, H.G.; Cittadini, A.; Maccauro, G.; Covacci, V.; Bruzzese, N.; Ricci, G.A.; Marmo, E. Y-TZP ceramics for artificial joint replacements. Biomaterials 1998, 19, 1489–1494. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Yin, L.; Nakanishi, Y.; Alao, A.R.; Song, X.F.; Abduo, J.; Zhang, Y. A Review of Engineered Zirconia Surfaces in Biomedical Applications. Procedia CIRP 2017, 65, 284–290. [Google Scholar] [CrossRef]
- Depprich, R.; Ommerborn, M.; Zipprich, H.; Naujoks, C.; Handschel, J.; Wiesmann, H.P.; Kübler, N.R.; Meyer, U. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces. Head Face Med. 2008, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Kunčická, L.; Kocich, R.; Lowe, T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017, 88, 232–280. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Bavanilathamuthiah, M.; Kirubaharan, K.; Ramachandran, D.; Dharini, T.; Viswanathan, K.; Vishwakarma, V. Bio-inspired YSZ coated titanium by EB-PVD for biomedical applications. Surf. Coat. Technol. 2016, 307, 227–235. [Google Scholar] [CrossRef]
- Depprich, R.; Zipprich, H.; Ommerborn, M.; Mahn, E.; Lammers, L.; Handschel, J.; Naujoks, C.; Wiesmann, H.P.; Kübler, N.R.; Meyer, U. Osseointegration of zirconia implants: An SEM observation of the bone-implant interface. Head Face Med. 2008, 4, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, R.; Li, J.; Wang, Y.; Chen, J.; Xue, Q. Structure and tribological behavior of GLCH/nitride coupled coatings on Ti6Al4V by nitriding and magnetron sputtering. Diam. Relat. Mater. 2016, 64, 70–79. [Google Scholar] [CrossRef]
- Zhong, Y.; Shi, L.; Li, M.; He, F.; He, X. Characterization and thermal shock behavior of composite ceramic coating doped with ZrO2particles on TC4 by micro-arc oxidation. Appl. Surf. Sci. 2014, 311, 158–163. [Google Scholar] [CrossRef]
- Lorenzetti, M.; Pellicer, E.; Sort, J.; Baró, M.D.; Kovač, J.; Novak, S.; Kobe, S. Improvement to the corrosion resistance of Ti-based implants using hydrothermally synthesized nanostructured anatase coatings. Materials 2014, 7, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Mohan, L.; Durgalakshmi, D.; Geetha, M.; Sankara Narayanan, T.S.N.; Asokamani, R. Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications. Ceram. Int. 2012, 38, 3435–3443. [Google Scholar] [CrossRef]
- Khor, K.A.; Cheang, P. Plasma sprayed hydroxyapatite(HA) coatings produced with flame spheroidised powders. J. Mater. Process. Technol. 1997, 63, 271–276. [Google Scholar] [CrossRef]
- Mauer, G.; Vaßen, R. Coatings with Columnar Microstructures for Thermal Barrier Applications. Adv. Eng. Mater. 2020, 22, 1900988. [Google Scholar] [CrossRef]
- Xiong, H.B.; Zheng, L.L.; Li, L.; Vaidya, A. Melting and oxidation behavior of in-flight particles in plasma spray process. Int. J. Heat Mass Transf. 2005, 48, 5121–5133. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, L.; Guo, H.; Xu, H. Microstructures and deposition mechanisms of quasi-columnar structured yttria-stabilized zirconia coatings by plasma spray physical vapor deposition. Ceram. Int. 2017, 43, 12920–12929. [Google Scholar] [CrossRef]
- Góral, M.; Kubaszek, T.; Kotowski, S.; Sieniawski, J.; Dudek, S. Influence of deposition parameters on structure of TBCS deposited by PS-PVD method. Int. Sci. Conf. Corros. 2015, 227, 369–372. [Google Scholar] [CrossRef]
- Goral, M.; Kotowski, S.; Nowotnik, A.; Pytel, M.; Drajewicz, M.; Sieniawski, J. PS-PVD deposition of thermal barrier coatings. Surf. Coat. Technol. 2013, 237, 51–55. [Google Scholar] [CrossRef]
- Góral, M.; Swadźba, R.; Kubaszek, T. TEM investigations of TGO formation during cyclic oxidation in two- and three-layered Thermal Barrier Coatings produced using LPPS, CVD and PS-PVD methods. Surf. Coat. Technol. 2020, 394, 125875. [Google Scholar] [CrossRef]
- Gao, L.; Wei, L.; Guo, H.; Gong, S.; Xu, H. Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition. Ceram. Int. 2016, 42, 5530–5536. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, L.; Gao, L.; Guo, H.; Xu, H. Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures. Surf. Coat. Technol. 2017, 311, 199–205. [Google Scholar] [CrossRef]
- Agarwal, R.; García, A.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 2015, 94, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.X.; Zhang, R.J.; Yan, Y.N.; Zhu, Z.X. Preparation of porous anatase titania film. Mater. Lett. 2004, 58, 1857–1860. [Google Scholar] [CrossRef]
- Mauer, G.; Jarligo, M.O.; Rezanka, S.; Hospach, A.; Vaßen, R. Novel opportunities for thermal spray by PS-PVD. Surf. Coat. Technol. 2015, 268, 52–57. [Google Scholar] [CrossRef]
- He, W.; Mauer, G.; Schwedt, A.; Guillon, O.; Vaßen, R. Advanced crystallographic study of the columnar growth of YZS coatings produced by PS-PVD. J. Eur. Ceram. Soc. 2018, 38, 2449–2453. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Li, C.X.; Wei, T.; Sun, H.B.; Zhang, S.L.; Luo, X.T.; Yang, G.J.; Li, C.J.; Liu, M.L. Controlling grain size in columnar YSZ coating formation by droplet filtering assisted PS-PVD processing. RSC Adv. 2015, 5, 102126–102133. [Google Scholar] [CrossRef]
- Gao, L.; Guo, H.; Wei, L.; Li, C.; Xu, H. Microstructure, thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition. Surf. Coat. Technol. 2015, 276, 424–430. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Coelho, P.G.; Kang, B.S.; Sul, Y.T.; Albrektsson, T. Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 2010, 28, 198–206. [Google Scholar] [CrossRef]
- Revathi, A.; Borrás, A.D.; Muñoz, A.I.; Richard, C.; Manivasagam, G. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Mater. Sci. Eng. C 2017, 76, 1354–1368. [Google Scholar] [CrossRef]
- Shao, F.; Zhao, H.; Liu, C.; Zhong, X.; Zhuang, Y.; Ni, J.; Tao, S. Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition. Ceram. Int. 2017, 43, 2305–2313. [Google Scholar] [CrossRef]
- Shao, F.; Zhao, H.; Zhong, X.; Zhuang, Y.; Cheng, Z.; Wang, L.; Tao, S. Characteristics of thick columnar YSZ coatings fabricated by plasma spray-physical vapor deposition. J. Eur. Ceram. Soc. 2018, 38, 1930–1937. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Chembath, M.; Balaraju, J.N.; Sujata, M. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy. Mater. Sci. Eng. C 2015, 56, 417–425. [Google Scholar] [CrossRef]
- Handzlik, P.; Fitzner, K. Corrosion resistance of Ti and Ti-Pd alloy in phosphate buffered saline solutions with and without H2O2 addition. Trans. Nonferrous Met. Soc. China 2013, 23, 866–875. [Google Scholar] [CrossRef]
- Asri, R.I.M.; Harun, W.S.W.; Samykano, M.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B. In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels. Mater. Sci. Eng. C 2015, 47, 48–56. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Vishwakarma, V.; Kirubaharan, K.; Dharini, T.; Ramachandran, D.; Muthaiah, B. Corrosion and biocompatibility behaviour of zirconia coating by EBPVD for biomedical applications. Surf. Coat. Technol. 2018, 334, 336–343. [Google Scholar] [CrossRef]
Ti (%) | Fe (%) | C (%) | O (%) | H (%) | N (%) |
---|---|---|---|---|---|
Balance | 0.3 | 0.08 | 0.25 | 0.015 | 0.03 |
Sample Marks | Chamber Pressure (Pa) | Power Current (A) | Sample Rotation Speed (RPM) | Ar/He Plasma Gasses Flow (NLPM) | Powder Feed Rate (g/min) | Deposition Time (s) |
---|---|---|---|---|---|---|
Ti_10_100 | 150 | 2400 | 20 | 35/60 | 10 | 50 |
Ti_10_400 | 200 |
Composition of Ringer Solution (g/L) | Electrolytic Concentration (mmol/L) | |||||
---|---|---|---|---|---|---|
NaCl | KCl | CaCl2H2O | Na | Cl | K | Ca |
8.6 | 0.3 | 0.33 | 147 | 156 | 4 | 2.2 |
Phase | Unit Cell Parameters (nm) | Type of Changes | |||
---|---|---|---|---|---|
Parameter | ICCD * | Ti_10_100 | Ti_10_400 | ||
YSZ ** | a0 | 0.36060 | 0.36210 ± 3 | 0.36225 ± 3 | |
c0 | 0.51800 | 0.51701 ± 6 | 0.51664 ± 8 | ||
α-Ti | a0 | 0.29505 | 0.29638 ± 5 | 0.29641 ± 5 | |
c0 | 0.46826 | 0.47792 ± 7 | 0.47800 ± 5 | ||
TiO | a0 | 0.41770 | 0.42969 ± 5 | — |
Sample | Average Thickness (µm) | RA (µm) | RP (µm) | RZ (µm) | RV (µm) |
---|---|---|---|---|---|
Ti_10_100 | 2.9 ± 1 | 0.25 ± 1 | 1.5 ± 2 | 2.6 ± 1 | 1.1 ± 1 |
Ti_10_400 | 9.0 ± 1 | 0.90 ± 6 | 4.1 ± 4 | 7.8 ± 8 | 3.7 ± 4 |
Sample | Coatings | Substrate | ||
---|---|---|---|---|
Young’s Modulus (GPa) | Hardness (GPa) | Young’s Modulus (GPa) | Hardness (GP) | |
Ti_10_100 | 78 ± 14 | 5 ± 1 | 129 ± 3 | 5 ± 2 |
Ti_10_400 | 58 ± 7 | 4 ± 1 | 153 ± 4 | 13 ± 1 |
Sample | EOC vs. SCE (V) | Ecor vs SCE (V) | Jcorr (A/cm2) | CR at Ecor (mm/yr) | Epb vs. SCE (V) |
---|---|---|---|---|---|
Ti_10_100 | −0.211 | −0.232 | 9.65·10−9 | 5.40·10−6 | - * |
Ti_10_400 | 0.011 | −0,099 | 1.07·10−8 | 5.97·10−5 | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dercz, G.; Barczyk, J.; Matuła, I.; Kubaszek, T.; Góral, M.; Maszybrocka, J.; Bochenek, D.; Stach, S.; Szklarska, M.; Ryszawy, D.; et al. Characterization of YSZ Coatings Deposited on cp-Ti Using the PS-PVD Method for Medical Applications. Coatings 2021, 11, 1348. https://doi.org/10.3390/coatings11111348
Dercz G, Barczyk J, Matuła I, Kubaszek T, Góral M, Maszybrocka J, Bochenek D, Stach S, Szklarska M, Ryszawy D, et al. Characterization of YSZ Coatings Deposited on cp-Ti Using the PS-PVD Method for Medical Applications. Coatings. 2021; 11(11):1348. https://doi.org/10.3390/coatings11111348
Chicago/Turabian StyleDercz, Grzegorz, Jagoda Barczyk, Izabela Matuła, Tadeusz Kubaszek, Marek Góral, Joanna Maszybrocka, Dariusz Bochenek, Sebastian Stach, Magdalena Szklarska, Damian Ryszawy, and et al. 2021. "Characterization of YSZ Coatings Deposited on cp-Ti Using the PS-PVD Method for Medical Applications" Coatings 11, no. 11: 1348. https://doi.org/10.3390/coatings11111348
APA StyleDercz, G., Barczyk, J., Matuła, I., Kubaszek, T., Góral, M., Maszybrocka, J., Bochenek, D., Stach, S., Szklarska, M., Ryszawy, D., & Pudełek, M. (2021). Characterization of YSZ Coatings Deposited on cp-Ti Using the PS-PVD Method for Medical Applications. Coatings, 11(11), 1348. https://doi.org/10.3390/coatings11111348