Antiarthritic Activities of Herbal Isolates: A Comprehensive Review
Abstract
:1. Introduction
2. Herbal Antiarthritic Drugs
2.1. Alkaloids
2.1.1. Montanine
2.1.2. 3-Acetylaconitine
2.1.3. Sanguinarine
2.1.4. Jatrorrhizine
2.1.5. Piperine
2.1.6. Capsaicin
2.1.7. Tubastrine
2.1.8. Orthidines
2.2. Terpenoids
2.2.1. Eugenol
2.2.2. Nimbolide
2.2.3. Bartogenic Acid
2.2.4. Cannabidiol
2.2.5. Curcumin
2.3. Flavonoids
2.3.1. Quercetin or 3,5,7,3′,4′-Pentahydroxy Flavone
2.3.2. Resveratrol
2.3.3. Kaempferol
2.3.4. Chebulanin
2.3.5. Ellagic Acid
2.3.6. Rosmarinic Acid
2.3.7. Gallic Acid
2.3.8. Chlorogenic Acid
2.3.9. Ferulic Acid
2.3.10. Brazilin
2.4. Plant Sterols
Beta-Sitosterol
3. Nano-Formulation of Isolated Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015, 4, 27–30. [Google Scholar] [PubMed]
- Laev, S.S.; Salakhutdinov, N.F. Anti-arthritic agents: Progress and potential. Bioorg. Med. Chem. 2015, 23, 3059–3080. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019-American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2020, 72, 149–162. [Google Scholar] [CrossRef]
- Bansod, M.S.; Kagathara, V.G.; Pujari, R.R.; Patel, V.B.; Ardeshna, H.H. Therapeutic effect of a polyherbal preparation on adjuvant induced arthritis in wistar rats. Int. J. Pharm. Pharm. Sci. 2011, 3, 186–192. [Google Scholar]
- Souliotis, K.; Golna, C.; Kani, C.; Nikolaidi, S.; Boumpas, D. Real world, big data cost of pharmaceutical treatment for rheumatoid arthritis in Greece. PLoS ONE 2019, 14, e0226287. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Iram, F.; Siddiqui, S.; Sahu, K. Role of natural products in drug discovery process. Int. J. Drug Dev. Res. 2014, 6, 172–204. [Google Scholar]
- Butt, M.S.; Sultan, M.T.; Butt, M.S.; Garlic, J.I. Nature’s protection against physiological threats. Crit. Rev. Food Sci. Nutr. 2009, 49, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Schwager, J.; Mohajeri, M.H.; Fowler, A.; Weber, P. Challenges in discovering bioactives for the food industry. Curr. Opin. Biotechnol. 2008, 19, 66–72. [Google Scholar] [CrossRef]
- Mohiuddin, A.K. Secondary metabolism and therapeutic efficacy of medicinal plants. J. Pharm. Biol. Sci. 2020, 6, 104–108. [Google Scholar] [CrossRef]
- Raman, P.; DeWitt, D.L.; Nair, M.G. Lipid peroxidation and cyclooxygenase enzyme inhibitory activities of acidic aqueous extracts of some dietary supplements. Phytother. Res. 2008, 22, 204–212. [Google Scholar] [CrossRef]
- Roller, M.; Clune, Y.; Collins, K.; Rechkemmer, G.; Watzl, B. Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients. Br. J. Nutr. 2007, 97, 676–684. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Otterlo, W.A.L.; Green, I.R. A Review on Recent Syntheses of Amaryllidaceae Alkaloids and Isocarbostyrils (Time period mid-2016 to 2017). Nat. Prod. Commun. 2018, 13, 255–277. [Google Scholar] [CrossRef][Green Version]
- Koutová, D.; Maafi, N.; Havelek, R.; Opletal, L.; Blunden, G.; Řezáčová, M.; Cahlíková, L. Chemical and biological aspects of montanine-type alkaloids isolated from plants of the amaryllidaceae family. Molecules 2020, 25, 2337. [Google Scholar] [CrossRef]
- Farinon, M.; Clarimundoa, S.V.; Pedrazzac, G.P.R.; Gulkod, P.S.; Zuanazzic, J.A.S.; Xaviera, R.M.; de Oliveira, P.G. Disease modifying anti-rheumatic activity of the alkaloid montanine on experimental arthritis and fibroblast-like synoviocytes. Eur. J. Pharmacol. 2017, 799, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.C.; Lin, Z.G.; Cai, W.; Chen, N.; Shen, L. Anti-inflammatory effect of 3-acetylaconitine. Acta Pharmacol. Sin. 1984, 5, 85–89. [Google Scholar]
- Li, H.; Zhai, Z.; Liu, G.; Tang, T.; Lin, Z.; Zheng, M.; Qin, A.; Dai, K. Sanguinarine inhibits osteoclast formation and bone resorption via suppressing RANKL-induced activation of NF-kappaB and ERK signaling pathways. Biochem. Biophys. Res. Commun. 2013, 430, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sun, X.; Huang, K.; Shen, S.; Lin, X.; Xie, Z.; Wang, J.; Fan, S.; Ma, J.; Zhao, X. Sanguinarine protects against osteoarthritis by suppressing the expression of catabolic proteases. Oncotarget 2017, 8, 62900–62913. [Google Scholar] [CrossRef][Green Version]
- Slobodníková, L.; Kost’Álová, D.; Labudová, D.; Kotulová, D.; Kettmann, V. Antimicrobial activity of Mahonia aquifolium crude extract and its major isolated alkaloids. Phytother. Res. 2004, 18, 674–676. [Google Scholar] [CrossRef]
- Qiu, H.; Sun, S.; Ma, X.; Cui, C.; Chen, G.; Liu, Z.; Li, H.; Liu, M. Jatrorrhizine hydrochloride suppresses proliferation, migration, and secretion of synoviocytes in vitro and ameliorates rat models of rheumatoid arthritis in vivo. Int. J. Mol. Sci. 2018, 19, 1514. [Google Scholar] [CrossRef][Green Version]
- Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; V Anil Kumar, N.; Salehi, B.; Cho, C.W.; Sharifi-Rad, J. Piperine-A major principle of black pepper: A review of its bioactivity and studies. Appl. Sci. 2019, 9, 4270. [Google Scholar] [CrossRef][Green Version]
- Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.J.; Lim, S.J.; Kim, J.Y.; Yang, H.I.; Yoo, M.C.; Hahm, D.H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther. 2009, 11, R49. [Google Scholar] [CrossRef][Green Version]
- Gamse, R.; Leeman, S.E.; Holzer, P.; Lembeck, F. Differential effects ofeapsaicin on the content of somatostatin, substance P and neurotensin in the nervous system of the rat. Naunyn Schmiedebergs Arch. Pharmacol. 1981, 7, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Bjurholm, A.; Srinivasan, G.R.; Lundeberg, T.; Theodorsson, E.; Schultzberg, M.; Kreicbergs, A. Capsaicin effects on substance P and CGRP in rat adjuvant arthritis. Regul. Pept. 1995, 55, 85–102. [Google Scholar] [CrossRef]
- Ryuichi, S.; Tubastrine, H.T. A new guanidinostyrene from the coral tubastrea aurea. Chem. Lett. 1987, 16, 127–128. [Google Scholar]
- Pearce, N.; Chia, E.W.; Berridge, M.; Maas, E.W.; Page, M.J.; Harper, J.L.; Webb, V.L.; Copp, B. Orthidines A–E, tubastrine, 3,4-dimethoxyphenethyl-β-guanidine, and 1,14-sperminedihomovanillamide: Potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron 2008, 64, 5748–5755. [Google Scholar] [CrossRef]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef][Green Version]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Osuntokun, O.T.; Ogunleye, A.J. Prospects of essential oils in drug discovery. ACP 2017, 2, 17–19. [Google Scholar] [CrossRef][Green Version]
- Carvalho, A.M.; Heimfarth, L.; Santos, K.A.; Guimarães, A.G.; Picot, L.; Almeida, J.R.; Quintans, J.S.; Quintans-Júnior, L.J. Terpenes as possible drugs for the mitigation of arthritic symptoms—A systematic review. Phytomedicine 2019, 57, 137–147. [Google Scholar] [CrossRef]
- Sharma, J.N.; Srivastava, K.C.; Gan, E.K. Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology 1994, 49, 314–318. [Google Scholar] [CrossRef]
- Grespan, R.; Paludo, M.; Lemos, H.D.P.; Barbosa, C.P.; Bersani-Amado, C.A.; Dalalio, M.M.D.O.; Cuman, R. Anti-arthritic effect of eugenol on collagen-induced arthritis experimental model. Biol. Pharm. Bull. 2012, 35, 1818–1820. [Google Scholar] [CrossRef][Green Version]
- Cui, X.; Wang, R.; Bian, P.; Wu, Q.; Seshadri, V.D.D.; Liu, L. Evaluation of antiarthritic activity of nimbolide against Freund’s adjuvant induced arthritis in rats. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3391–3398. [Google Scholar] [CrossRef][Green Version]
- Dubey, V.K.; Budhauliya, A.; Jaggi, M.; Singh, A.T.; Rajput, S.K. Tumor-suppressing effect of bartogenic acid in ovarian (SKOV-3) xenograft mouse model. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 1815–1826. [Google Scholar] [CrossRef]
- Patil, K.R.; Patil, C.R.; Jadhav, R.B.; Mahajan, V.K.; Patil, P.R.; Gaikwad, P.S. Anti-Arthritic Activity of Bartogenic Acid Isolated from Fruits of barringtonia racemose roxb. (Lecythidaceae). Evid.-Based Complement. Altern. Med. 2011, 2011, 785245. [Google Scholar] [CrossRef][Green Version]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and nonpsychoactive cannabinoids: Their chemistry and role against oxidative stress, inflammation, and cancer. BioMed Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Malfait, A.-M.; Gallily, R.; Sumariwalla, P.F.; Malik, A.S.; Andreakos, E.; Mechoulam, R.; Feldmann, M. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 2000, 97, 9561–9566. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Feldmann, M.; Malfait, A.M.; Gallily, R.; Mechoulam, R. Use of cannabinoids as anti-inflammatory agents. U.S. Patent 6,410,588 B1, 25 June 2002. [Google Scholar]
- Jacob, A.; Wu, R.; Zhou, M.; Wang, P. Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation. PPAR Res. 2007, 2007, 89369. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Xu, Z.; Huang, Y.; Duan, X.; Gong, W.; Zhang, Y.; Fan, J.; He, F. Curcumin protects against collagen-induced arthritis via suppression of BAFF production. J. Clin. Immunol. 2012, 33, 550–557. [Google Scholar] [CrossRef]
- Kuncha, M.; Naidu, V.G.; Sahu, B.D.; Gadepalli, S.G.; Sistla, R. Curcumin potentiates the anti-arthritic effect of prednisolone in Freund’s complete adjuvant-induced arthritic rats. J. Pharm. Pharmacol. 2014, 66, 133–144. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol. 2018, 9, 386. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Elisha, I.L.; Dzoyem, J.-P.; McGaw, L.J.; Botha, F.S.; Eloff, J.N. The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement. Altern. Med. 2016, 16, 307. [Google Scholar] [CrossRef][Green Version]
- Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Li, X.; Huang, G.; Xu, A. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem. 2020, 84, 108454. [Google Scholar] [CrossRef] [PubMed]
- Mamani-Matsuda, M.; Kauss, T.; Al-Kharrat, A.; Rambert, J.; Fawaz, F.; Thiolat, D.; Moynet, D.; Coves, S.; Malvy, D.; Mossalayi, M.D. Therapeutic and preventive 340 properties of quercetin in experimental arthritis correlate with decreased 341 macrophage inflammatory mediators. Ochem. Pharmacol. 2006, 72, 1304–1310. [Google Scholar]
- Gardi, K.; Bauerova, B.; Stringa, V.; Kuncirova, L.; Slovak, S.; Ponist, F.; Dra, L.; Bezakova, I.; Tedesco, A.; Acquaviva, S.; et al. Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Biochem. Biophys. 2015, 583, 150–157. [Google Scholar] [CrossRef]
- Gaikwad, R.D.; Ahmed, M.L.; Khalid, M.S.; Swamy, P. Anti-infammatory activity of madhuca longifolia seed saponin mixture. Pharm. Biol. 2009, 47, 592–597. [Google Scholar] [CrossRef]
- Tang, Y.; Xie, D.; Gong, W.; Wu, H.; Qiang, Y. Pentahydroxy flavonoid isolated from Madhuca indica ameliorated adjuvant-induced arthritis via modulation of inflammatory pathways. Sci. Rep. 2021, 11, 17971. [Google Scholar] [CrossRef] [PubMed]
- Haleagrahara, N.; Miranda-Hernandez, S.; Alim, A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother. 2017, 90, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-Y.; Wang, Z.-C.; Li, J.; Liu, X.-L.; Sun, Y.-H. Regulation of synoviocyte activity by resveratrol in rats with adjuvant arthritis. Exp. Ther. Med. 2013, 6, 172–176. [Google Scholar] [CrossRef][Green Version]
- Chen, X.; Lu, J.; An, M.; Ma, Z.; Zong, H.; Yang, J. Anti-inflammatory effect of resveratrol on adjuvant arthritis rats with abnormal immunological function via the reduction of cyclooxygenase-2 and prostaglandin E2. Mol. Med. Rep. 2014, 9, 2592–2598. [Google Scholar] [CrossRef] [PubMed][Green Version]
- El-Ghazaly, M.A.; Fadel, N.A.; Abdel-Naby, D.H.; El-Rehim, H.A.A.; Zaki, H.F.; Kenawy, S.A. Potential anti-inflammatory action of resveratrol and piperine in adjuvant-induced arthritis: Effect on pro-inflammatory cytokines and oxidative stress biomarkers. Egypt. Rheumatol. 2020, 42, 71–77. [Google Scholar] [CrossRef]
- Cortes, J.R.; Perez-G, M.; Rivas, M.D.; Zamorano, J. Kaempferol inhibits IL 4 induced STAT6 activation by specifically targeting JAK3. J. Immunol. 2007, 179, 3881–3887. [Google Scholar] [CrossRef][Green Version]
- García-Mediavilla, M.V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in chang liver cells. Eur. J. Pharmacol. 2007, 557, 221–229. [Google Scholar] [CrossRef]
- Yoon, C.-H.; Chung, S.-J.; Lee, S.-W.; Park, Y.-B.; Lee, S.-K.; Park, M.-C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Jt. Bone Spine 2013, 80, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, F.; Liu, Y.; Zhou, D.; Dai, Q.; Liu, S. Anti-arthritic effect of chebulanin on collagen-induced arthritis in mice. PLoS ONE 2015, 10, e0139052. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Zhan, S.; Lv, J.; Sun, F.; Weng, B.; Liu, S.; Xia, P. Chebulanin exerts its anti-inflammatory and anti-arthritic effects via inhibiting NF-κB and MAPK activation in collagen-induced arthritis mice. Int. Immunopharmacol. 2020, 88, 106823. [Google Scholar] [CrossRef]
- Bansal, N.; Kumar, M. Evaluation of neuroprotective properties of ellagic acid and caffeic acid phenethylester. Ann. Short Rep. 2018, 1, 1029. [Google Scholar]
- Sepúlveda, L.; Ascacio, A.; Rodriguez-Herrera, R.; Aguilera-Carbo, A.; Aguilar, C.N. ChemInform abstract: Ellagic acid: Biological properties and biotechnological development for production processes. Afr. J. Biotechnol. 2012, 43, 4518–4523. [Google Scholar] [CrossRef]
- Shruthi, S.D.; Ganapathy, S.P.S.; Kumar, R.; Kumara, S.; Dharshan, J.C.; Ramachandra, Y.L. In vivo, in vitro anti-arthritic studies of ellagic acid from kirganelia reticulata baill and its molecular docking. J. App. Pharm. Sci. 2014, 4, 024–031. [Google Scholar]
- Umar, S.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Combination therapy of methotrexate with ellagic acid attenuates the over expression of pro-inflammatory cytokines and modulates antioxidant status in collagen induced arthritis. Front. Immunol. 2013, 15, 22–27. [Google Scholar]
- Scarpati, M.; Oriente, G. Chicoric acid (dicaffeyltartic acid): Its isolation from chicory (Chicorium intybus) and synthesis. Tetrahedron 1958, 4, 43–48. [Google Scholar] [CrossRef]
- Wei, T.; Liu, Y.; Li, M. Anti-inflammatory and anti-arthritic activity of rosmarinic acid isolated from rosmarinus officinalis in an experimental model of arthritis. Indian J. Pharm. Educ. Res. 2021, 55, 507–516. [Google Scholar] [CrossRef]
- Shi, M.; Wang, J.; Xiao, Y.; Wang, C.; Qiu, Q.; Lao, M.; Yu, Y.; Li, Z.; Zhang, H.; Ye, Y.; et al. glycogen metabolism and rheumatoid arthritis: The role of glycogen synthase 1 in regulation of synovial inflammation via blocking AMP-activated protein kinase activation. Front. Immunol. 2018, 9, 1714. [Google Scholar] [CrossRef]
- Yoon, H.-Y.; Lee, E.-G.; Lee, H.; Cho, I.J.; Choi, Y.J.; Sung, M.-S.; Yoo, H.-G.; Yoo, W.-H. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. Int. J. Mol. Med. 2013, 32, 971–977. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chauhan, P.S.; Satti, N.K.; Sharma, P.; Sharma, V.K.; Suri, K.A.; Bani, S. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytother. Res. 2012, 26, 1156–1165. [Google Scholar] [CrossRef]
- Fu, X.; Lyu, X.; Liu, H.; Zhong, D.; Xu, Z.; He, F.; Huang, G. Chlorogenic acid inhibits baff expression in collagen-induced arthritis and human synoviocyte mh7a cells by modulating the activation of the nf-κb signaling pathway. J. Immunol. Res. 2019, 22, 8042097. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, L.; Al-Suwayeh, S.A.; Hsiehc, P.; Fang, J. A comparison of skin delivery of ferulic acid and its derivatives: Evaluation of their efcacy and safety. Int. J. Pharm. 2010, 399, 44–51. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Z.; Xia, N.; Zhang, W.; Wei, Y.; Huang, J.; Ren, Z.; Meng, F.; Yang, L. Anti-arthritic activity of ferulic acid in complete Freund’s adjuvant (CFA)-induced arthritis in rats: JAK2 inhibition. Inflammopharmacology 2019, 28, 463–473. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Rajput, M.S.; Prasad, R.G.S.V.; Ahmad, M. Brazilin from caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac. J. Trop. Med. 2015, 8, 421–430. [Google Scholar] [CrossRef][Green Version]
- Jung, E.-G.; Han, K.-I.; Hwang, S.G.; Kwon, H.-J.; Patnaik, B.B.; Kim, Y.H.; Han, M.-D. Brazilin isolated from caesalpinia sappan L. inhibits rheumatoid arthritis activity in a type-II collagen induced arthritis mouse model. BMC Complement. Altern. Med. 2015, 15, 124. [Google Scholar] [CrossRef][Green Version]
- Wang, K.; Senthil-Kumar, M.; Ryu, C.-M.; Kang, L.; Mysore, K.S. Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 2012, 158, 1789–1802. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, R.; Hao, D.; Xu, W.; Li, J.; Li, X.; Shen, D.; Sheng, K.; Zhao, L.; Xu, W.; Gao, Z.; et al. β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm. Biol. 2019, 57, 161–168. [Google Scholar] [CrossRef][Green Version]
- Khan, T.; Vaidya, A.; Jain, R. Meropenem loaded pectin microspheres for colon delivery. Asian J. Biomater. Res. 2018, 4, 8–20. [Google Scholar]
- Vaidya, A.; Jain, S.; Pathak, K.; Pathak, D. Dendrimers: Nanosized multifunctional platform for drug delivery. Drug Deliv. Lett. 2018, 8, 3–19. [Google Scholar] [CrossRef]
- Jain, P.; Vaidya, A.; Jain, R.; Shrivastava, S.; Khan, T.; Jain, A. Ethyl cellulose coated chitosan microspheres of metronidazole as potential anti-amoebic agent. J. Bionanosci. 2017, 11, 599–607. [Google Scholar] [CrossRef]
- Vaidya, A.; Jain, S.; Jain, A.; Jain, A. Simvastatin-loaded PEGylated solid lipid nanoparticles: Lipid functionalization to improve blood circulation. Bionanoscience 2020, 10, 773–782. [Google Scholar] [CrossRef]
- Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm. 2017, 43, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Sarwa, K.K.; Mazumder, B.; Rudrapal, M.; Verma, V.K. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv. 2015, 22, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, N.; Eftekhari, Z.; Roodbari, N.H.; Parivar, K. Evaluation of encapsulated eugenol by chitosan nanoparticles on the aggressive model of rheumatoid arthritis. Int. Immunopharmacol. 2020, 85, 106554. [Google Scholar] [CrossRef] [PubMed]
- Jeyadevi, R.; Sivasudha, T.; Rameshkumar, A.; Ananth, D.A.; Aseervatham, G.S.B.; Kumaresan, K.; Kumar, L.D.; Jagadeeswari, S.; Renganathan, R. Enhancement of antiarthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats. Colloids Surf. B Biointerfaces 2013, 112, 255–263. [Google Scholar] [CrossRef]
- Gokhale, J.P.; Mahajan, H.S.; Surana, S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019, 112, 108622. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Z.; He, X.; Li, Z.; Shi, B.; Cai, F. β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: Involvement of NF-кB and HO-1/Nrf-2 pathway. Drug Deliv. 2020, 27, 1329–1341. [Google Scholar] [CrossRef]
- Kamel, R.; Abbas, H.; Shaffie, N.M. Development and evaluation of PLA-coated co-micellar nanosystem of resveratrol for the intra-articular treatment of arthritis. Int. J. Pharm. 2019, 569, 118560. [Google Scholar] [CrossRef]
- Tzeng, C.-W.; Yen, F.-L.; Wu, T.-H.; Ko, H.-H.; Lee, C.-W.; Tzeng, W.-S.; Lin, C.-C. Enhancement of dissolution and antioxidant activity of kaempferol using a nanoparticle engineering process. J. Agric. Food Chem. 2011, 59, 5073–5080. [Google Scholar] [CrossRef]
- Yücel, Ç.; Şeker, K.G.; Değim, İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul. 2019, 36, 180–191. [Google Scholar] [CrossRef]
- Deligiannakis, Y.; Sotiriou, G.A.; Pratsinis, S.E. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl. Mater. Interfaces 2012, 4, 6609–6617. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Jun, S.H.; Park, Y.; Cha, S.-H.; Yoon, M.; Cho, S.; Lee, H.-J.; Park, Y. Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1677–1688. [Google Scholar] [CrossRef]
- Harwansh, R.K.; Mukherjee, P.K.; Bahadur, S.; Biswas, R. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress. Life Sci. 2015, 141, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Bansal, K.K.; Gupta, J.; Rosling, A.; Rosenholm, J.M. Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: In vitro and in vivo evaluation. Saudi Pharm. J. 2018, 26, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Wik, J.; Bansal, K.K.; Assmuth, T.; Rosling, A.; Rosenholm, J.M. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv. Transl. Res. 2020, 10, 1228–1240. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cai, H.; Zheng, Z.; Sun, Y.; Liu, Z.; Zhang, M.; Li, C. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Dev. Ther. 2015, 9, 4931–4942. [Google Scholar] [CrossRef] [PubMed][Green Version]
Plant Isolate | Molecular Formula | Structure | IUPAC Name | Dose |
---|---|---|---|---|
Montanine | C32H48O8 | | (1R,2R,6S,7S,8R,10S,11S,12R,16R,18R)-6,7-dihydroxy-8-(hydroxymethyl)-4,18-dimethyl-16-prop-1-en-2-yl-14-undecyl-9,13,15,19-tetraoxahexacyclo[12.4.1.0.0.0.0]nonadec-3-en-5-one | 0.5 and 1.5 mg/mL (i.p.) |
3-Acetylaconitine (AAc) | C36H49NO12 | | [(2R,3R,5R,6S,8R,10R,17S)-8,14-diacetyloxy-11-ethyl-5,7-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1.0.0.0]nonadecan-4-yl] benzoate | 0.3–0.5 mg/kg (oral) |
Sanguinarine | C20H14NO4 | | [(2R,3R,5R,6S,8R,10R,17S)-8,14-diacetyloxy-11-ethyl-5,7-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1.0.0.0]nonadecan-4-yl] benzoate | 0.625 and 1.25 μM (i.v.) |
Jatrorrhizine | C20H20NO4+1 | | 2,9,10-trimethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-7-ium-3-ol | 20 and 50 mg/kg (oral) |
Piperine | C17H19NO3 | | (2E,4E)-5-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylpenta-2,4-dien-1-one | 20 and 100 mg/kg (oral) |
Capsaicin | C18H27NO3 | | (E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide | 200 mg/kg (s.c.) |
Tubastrine | C9H11N3O2 | | 2-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]guanidine | - |
Orthidine F | C28H42N4O6 | | N,N’-[1,4-Butandiylbis(imino-3,1-propandiyl)]bis[2-(4-hydroxy-3-methoxyphenyl)acetamid] | 25 µmol/kg (oral) |
Eugenol | C10H12O2 | | 2-methoxy-4-prop-2-enylphenol | 100 µg (oral) |
Nimbolide | C27H30O7 | | methyl 2-[6-(furan-3-yl)-7,9,11,15-tetramethyl-12,16-dioxo-3,17-dioxapentacyclo[9.6.1.0.0.0]octadeca-7,13-dien-10-yl]acetate | 20 mg/kg (oral) |
Bartogenic acid | C30H46O7 | | (2R,3R,4S,4aR,6aR,6bS,8aR,12S,12aS,14aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid | 2, 5 and 10 mg/kg (oral) |
Cannabidiol | C21H30O2 | | 2-[(1R,6R)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]-5-pentylbenzene-1,3-diol | 5 mg/kg (i.p.) or 25 mg/kg (oral) |
Curcumin | C21H20O6 | | (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione | 50 mg/kg (i.p.) |
Quercetin | C15H10O7 | | 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one | 30 and 150 mg/kg (oral) |
Resveratrol | C14H12O3 | | 5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol | 10 and 50 mg/kg (oral) |
Kaempferol | C15H10O6 | | 3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one | 25 mg/kg (oral) |
Chebulanin | C27H24O19 | | 2-[13,17,18,21-tetrahydroxy-7-(hydroxymethyl)-2,10,14-trioxo-5-(3,4,5-trihydroxybenzoyl)oxy-3,6,9,15-tetraoxatetracyclo[10.7.1.1.0]henicosa-1(19),16(20),17-trien-11-yl]acetic acid | 40, 80 and 160 mg/kg (oral) |
Ellagic acid | C14H6O8 | | 6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0.0]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione | 250 mg/kg (oral) |
Rosmarinic acid | C18H16O8 | | (2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxypropanoic acid | 30 and 60 mg/kg (oral) Or 60 mg/kg (i.p) |
Gallic acid | C7H6O5 | | 3,4,5-trihydroxybenzoic acid | 100 mg/kg (i.a.) |
Chlorogenic Acid | C16H18O9 | | (1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid | 40 mg/kg (oral) |
Ferulic acid | C10H10O4 | | (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid | 25 and 50 mg/kg (oral) |
Brazilin | C16H14O5 | | (6aS,11bR)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol | 10 mg/kg (i.p.) |
Beta-sitosterol | C29H50O | | (3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol | 20 and 50 mg/kg (i.p.) |
Nanoformulation | Isolate Compound | Method of Preparation | Average Particle Size (nm) |
---|---|---|---|
Solid lipid nanoparticle | Piperine | Melt emulsification | 128.80 |
Transferosome | Capsaicin | Conventional thin film hydration | 94 |
Chitosan nanoparticles | Eugenol | Solvent dispersion method | 30.8–37.95 |
Sodium alginate microcapsules | Cannabidiol | Ionic gelation | 0.400 ± 0.050 |
Nanoemulsions | Curcumin | High-pressure homogenizing | 150 |
Cadmium telluride quantum dots | Quercetin | N-acetyl-l-cysteine (nac) as stabilizer in aqueous solution | 185 |
Nano-emulsion | Quercetin | Spontaneous emulsification techniques | 136.8 ± 1.2 |
Mixed micellar nanosystem | Resveratrol | Thin film hydration method | 52.97 ± 4.52 |
Eudragit nanoparticle | Kaempferol | Nanoprecipitation | 87.8 ± 1.67 |
Ethosomes | Rosmarinic acid | Mechanical dispersion | 138 ± 1.11 |
Liposomes | Rosmarinic acid | Dry film hydration | 202 ± 1.12 |
Silica nanoparticles | Gallic acid | Covalent immobilization | 8−30 |
Gold nanoparticles | Chlorogenic acid | Green synthesis | 22.25 ± 4.78 |
Nanoemulsions | Ferulic acid | Spontaneous nano-emulsification | 100–200 |
Solid lipid nanoparticles | β-sitosterol | Double emulsion solvent displacement | 146.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Vaidya, A.; Gupta, P.K.; Rosenholm, J.M.; Bansal, K.K. Antiarthritic Activities of Herbal Isolates: A Comprehensive Review. Coatings 2021, 11, 1329. https://doi.org/10.3390/coatings11111329
Jain S, Vaidya A, Gupta PK, Rosenholm JM, Bansal KK. Antiarthritic Activities of Herbal Isolates: A Comprehensive Review. Coatings. 2021; 11(11):1329. https://doi.org/10.3390/coatings11111329
Chicago/Turabian StyleJain, Shweta, Ankur Vaidya, Pawan Kumar Gupta, Jessica M. Rosenholm, and Kuldeep K. Bansal. 2021. "Antiarthritic Activities of Herbal Isolates: A Comprehensive Review" Coatings 11, no. 11: 1329. https://doi.org/10.3390/coatings11111329