Effect of Hofmeister Anions on Interfacial Properties of Mica Surface in Concentrated Aqueous Solution
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Intersurface Forces in Monovalent Solutions at 0.1 M
3.2. Intersurface Forces in Monovalent Solutions at 1−3 M
3.3. Ion Pairing in Highly Concentrated Solution
3.4. Hydrodynamic Effect
3.5. Anion Effect on Water Structuring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011; p. 704. [Google Scholar]
- Madsen, F.T.; Müller-Vonmoos, M. The swelling behaviour of clays. Appl. Clay Sci. 1989, 4, 143–156. [Google Scholar] [CrossRef]
- Peukert, W.; Schwarzer, H.-C.; Stenger, F. Control of aggregation in production and handling of nanoparticles. Chem. Eng. Process. Process. Intensif. 2005, 44, 245–252. [Google Scholar] [CrossRef]
- Poortinga, A.T.; Bos, R.; Norde, W.; Busscher, H.J. Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. 2002, 47, 1–32. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer: New York, NY, USA, 1999. [Google Scholar]
- Oren, Y. Capacitive deionization (CDI) for desalination and water treatment—Past, present and future (a review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Yuqing, M.; Jianguo, G.; Jianrong, C. Ion sensitive field effect transducer-based biosensors. Biotechnol. Adv. 2003, 21, 527–534. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Smith, A.M.; Lee, A.A.; Perkin, S. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 2016, 7, 2157–2163. [Google Scholar] [CrossRef]
- Al-Shara, N.K.; Sher, F.; Yaqoob, A.; Chen, G.Z. Electrochemical investigation of novel reference electrode Ni/Ni(OH)2 in comparison with silver and platinum inert quasi-reference electrodes for electrolysis in eutectic molten hydroxide. Int. J. Hydrog. Energy 2019, 44, 27224–27236. [Google Scholar] [CrossRef]
- Al-Shara, N.K.; Sher, F.; Iqbal, S.Z.; Sajid, Z.; Chen, G.Z. Electrochemical study of different membrane materials for the fabrication of stable, reproducible and reusable reference electrode. J. Energy Chem. 2020, 49, 33–41. [Google Scholar] [CrossRef]
- Al-Shara, N.K.; Sher, F.; Iqbal, S.Z.; Curnick, O.; Chen, G.Z. Design and optimization of electrochemical cell potential for hydrogen gas production. J. Energy Chem. 2020, 52, 421–427. [Google Scholar] [CrossRef]
- Stern, O. The theory of the electrolytic double shift. Z. Elektrochem. Angew. Phys. Chem. 1924, 30, 508–516. [Google Scholar]
- Smith, A.M.; Borkovec, M.; Trefalt, G. Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 2020, 275, 102078. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Zhang, J.; Gong, L.; Zeng, H. Surface forces and interaction mechanisms of soft thin films under confinement: A short review. Soft Matter 2020, 16, 6697–6719. [Google Scholar] [CrossRef] [PubMed]
- Gebbie, M.A.; Valtiner, M.; Banquy, X.; Fox, E.T.; Henderson, W.A.; Israelachvili, J.N. Ionic liquids behave as dilute electrolyte solutions. Proc. Natl. Acad. Sci. USA 2013, 110, 9674–9679. [Google Scholar] [CrossRef]
- Gebbie, M.A.; Dobbs, H.A.; Valtiner, M.; Israelachvili, J.N. Long-range electrostatic screening in ionic liquids. Proc. Natl. Acad. Sci. USA 2015, 112, 7432–7437. [Google Scholar] [CrossRef]
- Gebbie, M.A.; Smith, A.M.; Dobbs, H.A.; Lee, A.A.; Warr, G.G.; Banquy, X.; Valtiner, M.; Rutland, M.W.; Israelachvili, J.N.; Perkin, S.; et al. Long range electrostatic forces in ionic liquids. Chem. Commun. (Camb.) 2017, 53, 1214–1224. [Google Scholar] [CrossRef]
- Huang, J. Confinement Induced Dilution: Electrostatic Screening Length Anomaly in Concentrated Electrolytes in Confined Space. J. Phys. Chem. C 2018, 122, 3428–3433. [Google Scholar] [CrossRef]
- Kjellander, R. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions. J. Chem. Phys. 2016, 145, 124503. [Google Scholar] [CrossRef]
- Kjellander, R. Decay behavior of screened electrostatic surface forces in ionic liquids: The vital role of non-local electrostatics. Phys. Chem. Chem. Phys. 2016, 18, 18985–19000. [Google Scholar] [CrossRef]
- Lee, A.A.; Perez-Martinez, C.S.; Smith, A.M.; Perkin, S. Underscreening in concentrated electrolytes. Faraday Discuss. 2017, 199, 239–259. [Google Scholar] [CrossRef]
- Lee, A.A.; Perez-Martinez, C.S.; Smith, A.M.; Perkin, S. Scaling Analysis of the Screening Length in Concentrated Electrolytes. Phys. Rev. Lett. 2017, 119, 026002. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cabello, F.J.; Trefalt, G.; Maroni, P.; Borkovec, M. Accurate predictions of forces in the presence of multivalent ions by Poisson-Boltzmann theory. Langmuir 2014, 30, 4551–4555. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Maroni, P.; Trefalt, G.; Borkovec, M. Unexpectedly Large Decay Lengths of Double-Layer Forces in Solutions of Symmetric, Multivalent Electrolytes. J. Phys. Chem. B 2019, 123, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Pashley, R.M. Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci. 1981, 80, 153–162. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Pashley, R.M. Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces. Nature 1983, 306, 249–250. [Google Scholar] [CrossRef]
- Cheng, L.; Fenter, P.; Nagy, K.L.; Schlegel, M.L.; Sturchio, N.C. Molecular-Scale Density Oscillations in Water Adjacent to a Mica Surface. Phys. Rev. Lett. 2001, 87, 156103–156104. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Marzal, R.M.; Drobek, T.; Balmer, T.; Heuberger, M.P. Hydrated-ion ordering in electrical double layers. Phys. Chem. Chem. Phys. 2012, 14, 6085–6093. [Google Scholar] [CrossRef]
- Zachariah, Z.; Espinosa-Marzal, R.M.; Spencer, N.D.; Heuberger, M.P. Stepwise collapse of highly overlapping electrical double layers. Phys. Chem. Chem. Phys. 2016, 18, 24417–24427. [Google Scholar] [CrossRef]
- Zachariah, Z.; Espinosa-Marzal, R.M.; Heuberger, M.P. Ion specific hydration in nano-confined electrical double layers. J. Colloid Interface Sci. 2017, 506, 263–270. [Google Scholar] [CrossRef]
- Kilpatrick, J.I.; Loh, S.H.; Jarvis, S.P. Directly probing the effects of ions on hydration forces at interfaces. J. Am. Chem. Soc. 2013, 135, 2628–2634. [Google Scholar] [CrossRef]
- Baimpos, T.; Shrestha, B.R.; Raman, S.; Valtiner, M. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li(+) and Cs(+) electrolyte solutions. Langmuir 2014, 30, 4322–4332. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Fenter, P.; Nagy, K.L.; Sturchio, N.C. Monovalent ion adsorption at the muscovite (001)-solution interface: Relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation. Langmuir 2012, 28, 8637–8650. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M.; Spijker, P.; Stellacci, F.; Molinari, J.F.; Voitchovsky, K. Direct visualization of single ions in the Stern layer of calcite. Langmuir 2013, 29, 2207–2216. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.D. Charge density-dependent strength of hydration and biological structure. Biophys. J. 1997, 72, 65–76. [Google Scholar] [CrossRef]
- Hu, Q.; Weber, C.; Cheng, H.W.; Renner, F.U.; Valtiner, M. Anion Layering and Steric Hydration Repulsion on Positively Charged Surfaces in Aqueous Electrolytes. Chemphyschem 2017, 18, 3056–3065. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Salmeron, M. An XPS and Scanning Polarization Force Microscopy Study of the Exchange and Mobility of Surface Ions on Mica. Langmuir 1998, 14, 5841–5844. [Google Scholar] [CrossRef]
- Pintea, S.; de Poel, W.; de Jong, A.E.; Vonk, V.; van der Asdonk, P.; Drnec, J.; Balmes, O.; Isern, H.; Dufrane, T.; Felici, R.; et al. Solid-Liquid Interface Structure of Muscovite Mica in CsCl and RbBr Solutions. Langmuir 2016, 32, 12955–12965. [Google Scholar] [CrossRef]
- Odelius, M.; Bernasconi, M.; Parrinello, M. Two Dimensional Ice Adsorbed on Mica Surface. Phys. Rev. Lett. 1997, 78, 2855–2858. [Google Scholar] [CrossRef]
- Gibb, B.C. Hofmeister’s curse. Nat. Chem. 2019, 11, 963–965. [Google Scholar] [CrossRef]
- Hribar, B.; Southall, N.T.; Vlachy, V.; Dill, K.A. How ions affect the structure of water. J. Am. Chem. Soc. 2002, 124, 12302–12311. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Storey, B.D.; Kornyshev, A.A. Double Layer in Ionic Liquids: Overscreening versus Crowding. Phys. Rev. Lett. 2011, 106, 46102–46104. [Google Scholar] [CrossRef]
- Yochelis, A. Transition from non-monotonic to monotonic electrical diffuse layers: Impact of confinement on ionic liquids. Phys. Chem. Chem. Phys. 2014, 16, 2836–2841. [Google Scholar] [CrossRef]
- Kang, B.; Tang, H.; Zhao, Z.; Song, S. Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS Omega 2020, 5, 6229–6239. [Google Scholar] [CrossRef] [PubMed]
- Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; et al. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 2010, 73, 036601. [Google Scholar] [CrossRef]
- Sun, Q. The Raman OH stretching bands of liquid water. Vib. Spectrosc. 2009, 51, 213–217. [Google Scholar] [CrossRef]
- Diao, Y.; Espinosa-Marzal, R.M. Molecular insight into the nanoconfined calcite-solution interface. Proc. Natl. Acad. Sci. USA 2016, 113, 12047–12052. [Google Scholar] [CrossRef]
- Montes Ruiz-Cabello, F.J.; Moazzami-Gudarzi, M.; Elzbieciak-Wodka, M.; Maroni, P.; Labbez, C.; Borkovec, M.; Trefalt, G. Long-ranged and soft interactions between charged colloidal particles induced by multivalent coions. Soft Matter 2015, 11, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Thermodynamics of solvation of ions. Part 5—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Marcus, Y. Effect of ions on the structure of water: Structure making and breaking. Chem. Rev. 2009, 109, 1346–1370. [Google Scholar] [CrossRef]
- Caminiti, R.; Paschina, G.; Pinna, G.; Magini, M. Experimental evidence of interactions SO2−4 −H2O in an aqueous solution. Chem. Phys. Lett. 1979, 64, 391–395. [Google Scholar] [CrossRef]
- Smith, D.W. Ionic hydration enthalpies. J. Chem. Educ. 1977, 54. [Google Scholar] [CrossRef]
- Salis, A.; Ninham, B.W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.B., Jr.; Strottmann, J.M.; Stellwagen, E. Prediction of neutral salt elution profiles for affinity chromatography. Proc. Natl. Acad. Sci. USA 1981, 78, 2287–2291. [Google Scholar] [CrossRef] [PubMed]
- Parsegian, V.A.; Zemb, T. Hydration forces: Observations, explanations, expectations, questions. Curr. Opin. Colloid Interface Sci. 2011, 16, 618–624. [Google Scholar] [CrossRef]
- Pashley, R.M. Hydration forces between mica surfaces in electrolyte solutions. Adv. Colloid Interface Sci. 1982, 16, 57–62. [Google Scholar] [CrossRef]
- Chapel, J.P. Electrolyte Species Dependent Hydration Forces between Silica Surfaces. Langmuir 1994, 10, 4237–4243. [Google Scholar] [CrossRef]
- Tulpar, A.; Subramanian, V.; Ducker, W. Decay Lengths of Double-Layer Forces in Solutions of Partly Associated Ions. Langmuir 2001, 17, 8451–8454. [Google Scholar] [CrossRef]
- Chan, D.Y.C.; Horn, R.G. The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 1985, 83, 5311–5324. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Measurement of the viscosity of liquids in very thin films. J. Colloid Interface Sci. 1986, 110, 263–271. [Google Scholar] [CrossRef]
- Jenkins, H.D.B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95, 2695–2724. [Google Scholar] [CrossRef]
- Abdulagatov, I.M.; Zeinalova, A.B.; Azizov, N.D. Viscosity of Aqueous Electrolyte Solutions at High Temperatures and High Pressures. ViscosityB-coefficient. Sodium Iodide. J. Chem. Eng. Data 2006, 51, 1645–1659. [Google Scholar] [CrossRef]
- Rumble, J.R.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 99th ed.; John, R.R., David, R.L., Thomas, J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Head-Gordon, T.; Johnson, M.E. Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. USA 2006, 103, 7973–7977. [Google Scholar] [CrossRef] [PubMed]
- Walrafen, G.E. Raman Spectral Studies of Water Structure. J. Chem. Phys. 1964, 40, 3249–3256. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, Y.; Wu, H.; Wu, D.; Huang, Y.; Sun, C.Q. Raman spectroscopy of alkali halide hydration: Hydrogen bond relaxation and polarization. J. Raman Spectrosc. 2016, 47, 1351–1359. [Google Scholar] [CrossRef]
- Nishi, N.; Nakabayashi, T.; Kosugi, K. Raman Spectroscopic Study on Acetic Acid Clusters in Aqueous Solutions: Dominance of Acid−Acid Association Producing Microphases. J. Phys. Chem. A 1999, 103, 10851–10858. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Hampton, M.A.; Nguyen, A.V. Atomic Force Microscopy Study of Forces between a Silica Sphere and an Oxidized Silicon Wafer in Aqueous Solutions of NaCl, KCl, and CsCl at Concentrations up to Saturation. J. Phys. Chem. C 2013, 117, 2113–2120. [Google Scholar] [CrossRef]
- Gaddam, P.; Ducker, W. Electrostatic Screening Length in Concentrated Salt Solutions. Langmuir 2019, 35, 5719–5727. [Google Scholar] [CrossRef]
- Nishimura, S.; Tateyama, H.; Tsunematsu, K.; Jinnai, K. Zeta potential measurement of muscovite mica basal plane-aqueous solution interface by means of plane interface technique. J. Colloid Interface Sci. 1992, 152, 359–367. [Google Scholar] [CrossRef]
- Dziadkowiec, J.; Javadi, S.; Bratvold, J.E.; Nilsen, O.; Royne, A. Surface forces apparatus measurements of interactions between rough and reactive calcite surfaces. Langmuir 2018, 34, 7248–7263. [Google Scholar] [CrossRef]
- Van Lin, S.R.; Grotz, K.K.; Siretanu, I.; Schwierz, N.; Mugele, F. Ion-Specific and pH-Dependent Hydration of Mica-Electrolyte Interfaces. Langmuir 2019, 35, 5737–5745. [Google Scholar] [CrossRef]
- Marcus, Y.; Hefter, G. Ion pairing. Chem. Rev. 2006, 106, 4585–4621. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N.R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Qian, S. Electrokinetic particle translocation through a nanopore. Phys. Chem. Chem. Phys. 2011, 13, 4060–4071. [Google Scholar] [CrossRef] [PubMed]





| Conc. | Z | λeff | DE | Ai | σi | Di | Wj | λHj | DHj |
|---|---|---|---|---|---|---|---|---|---|
| (pN) | (nm) | (nm) | (mN/m) | (nm) | (nm) | (mN/m) | (nm) | (nm) | |
| NaI | |||||||||
| 0.1 | 2.3 | 0.96 | 1.9 | 0.6 | 0.29 | 1.3 | 2.6 | 0.13 | 0.6 |
| - | - | - | - | 4.7 | 0.20 | 0.9 | - | - | - |
| 1 | 2.8 | 0.31 | 0.6 | - | - | - | - | - | 0.5 |
| 3 | - | - | - | - | - | - | 2.0 | 0.27 | 0.8 |
| NaCl | |||||||||
| 0.1 | 3.2 | 1.01 | 2.1 | 0.3 | 0.39 | 1.9 | 2.0 | 0.20 | 0.6 |
| - | - | - | - | 2.3 | 0.28 | 1.1 | - | - | - |
| 1 | 2.1 | 1.09 | 1.6 | 1.4 | 0.33 | 1.4 | 1.8 | 0.19 | 0.6 |
| - | - | - | - | 6.2 | 0.21 | 1.0 | - | - | - |
| 3 | 1.7 | 1.22 | 2.2 | - | - | - | 3.1 | 0.30 | 0.7 |
| NaAc | |||||||||
| 0.1 | 2.6 | 1.05 | 2.3 | - | - | - | 1.9 | 0.24 | 1.4 |
| 1 | 2.0 | 5.25 | 4.6 | - | - | - | 1.7 | 0.47 | 1.3 |
| - | - | - | - | - | - | - | 0.7 | 0.18 | 1.1 |
| 3 | 2.3 | 3.22 | 2.3 | - | - | - | 3.4 | 0.28 | 0.9 |
| Na2SO4 | |||||||||
| 0.33 | 2.4 | 5.16 | 3.0 | - | - | - | 2.3 | 0.36 | 0.9 |
| 1 | 1.5 | 3.25 | 2.6 | - | - | - | 0.5 | 0.48 | 0.9 |
| Specification | Na+ | I− | Cl− | Ac− | SO42− |
|---|---|---|---|---|---|
| Ionic radius (Å) [50] | 1.02 | 2.20 | 1.81 | 1.62 | 2.30 |
| Hydration radius (Å) [51,52] | 2.34 a | 3.63 a | 3.16 a | 3.23 a | 3.79 b |
| Hydration number [51,52] | 5.3 | 6.7 | 7.0 | 4.0 | 7.6 |
| Hydration enthalpy (kJ/mol) [53,54] | 409 | 305 | 381 | 425 | 1059 |
| Jones-Dole viscosity B coefficients [55] | 0.086 | −0.068 | −0.007 | 0.250 | 0.208 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, Y.; Yang, Q.; Zhang, X.; Zhang, Y. Effect of Hofmeister Anions on Interfacial Properties of Mica Surface in Concentrated Aqueous Solution. Coatings 2020, 10, 872. https://doi.org/10.3390/coatings10090872
Kan Y, Yang Q, Zhang X, Zhang Y. Effect of Hofmeister Anions on Interfacial Properties of Mica Surface in Concentrated Aqueous Solution. Coatings. 2020; 10(9):872. https://doi.org/10.3390/coatings10090872
Chicago/Turabian StyleKan, Yajing, Qiang Yang, Xuanxuan Zhang, and Yin Zhang. 2020. "Effect of Hofmeister Anions on Interfacial Properties of Mica Surface in Concentrated Aqueous Solution" Coatings 10, no. 9: 872. https://doi.org/10.3390/coatings10090872
APA StyleKan, Y., Yang, Q., Zhang, X., & Zhang, Y. (2020). Effect of Hofmeister Anions on Interfacial Properties of Mica Surface in Concentrated Aqueous Solution. Coatings, 10(9), 872. https://doi.org/10.3390/coatings10090872

