Composition, Structure and Mechanical Properties of Industrially Sputtered Ta–B–C Coatings
Abstract
:1. Introduction
2. Experimental Setup
2.1. Sample Deposition
2.2. Sample Characterization
3. Results and Discussion
3.1. Chemical Composition and Deposition Rate
3.2. Morphology and Structure
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- SHM s.r.o., Šumperk, Czech Republic. SHM Industrial PVD Coatings—PVD Coatings. Available online: https://shm-cz.cz/en/pvd-coatings/ (accessed on 29 August 2020).
- Oerlikon Balzers, Balzers, Lichtenstein. Oerlikon Balzers—Balzers Surface Solutions. Available online: https://www.oerlikon.com/balzers/com/en/portfolio/balzers-surface-solutions/ (accessed on 29 August 2020).
- CemeCon, Aachen, Germany. Cemecon the Tooling Company—Coating Materials. Available online: https://www.cemecon.de/en/coating-materials (accessed on 29 August 2020).
- Jilek, M.; Cselle, T.; Holubar, P.; Morstein, M.; Veprek-Heijman, M.; Veprek, S. Development of novel coating technology by vacuum arc with rotating cathodes for industrial production of nc-(Al1-xTix) N/a-Si3N4 superhard nanocomposite coatings for dry, hard machining. Plasma Chem. Plasma Process. 2004, 24, 493–510. [Google Scholar] [CrossRef]
- Veprek, S.; Veprek-Heijman, M.J. Industrial applications of superhard nanocomposite coatings. Surf. Coat. Technol. 2008, 202, 5063–5073. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Xu, Y.X.; Wang, Q.; Chen, L.; Kim, K.H. Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition. Surf. Coat. Technol. 2019, 378, 125022. [Google Scholar] [CrossRef]
- Voevodin, A.; Zabinski, J. Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection. Diam. Relat. Mater. 1998, 7, 463–467. [Google Scholar] [CrossRef]
- Hahn, R.; Bartosik, M.; Soler, R.; Kirchlechner, C.; Dehm, G.; Mayrhofer, P.H. Superlattice effect for enhanced fracture toughness of hard coatings. Scr. Mater. 2016, 124, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Roa, J.; Yu, C.; Johansson-Joesaar, M.; Andersson, J.; Anglada, M.; Oden, M.; Rogström, L. Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying. Surf. Coat. Technol. 2018, 342, 85–93. [Google Scholar] [CrossRef]
- Hahn, R.; Kirnbauer, A.; Bartosik, M.; Kolozsvári, S.; Mayrhofer, P. Toughness of Si alloyed high-entropy nitride coatings. Mater. Lett. 2019, 251, 238–240. [Google Scholar] [CrossRef]
- Emmerlich, J.; Music, D.; Braun, M.; Fayek, P.; Munnik, F.; Schneider, J.M. A proposal for an unusually stiff and moderately ductile hard coating material: Mo2BC. J. Phys. D Appl. Phys. 2009, 42, 185406. [Google Scholar] [CrossRef]
- Bolvardi, H.; Emmerlich, J.; Mráz, S.; Arndt, M.; Rudigier, H.; Schneider, J.M. Low temperature synthesis of Mo2BC thin films. Thin Solid Films 2013, 542, 5–7. [Google Scholar] [CrossRef]
- Bolvardi, H.; Emmerlich, J.; to Baben, M.; Music, D.; von Appen, J.; Dronskowski, R.; Schneider, J.M. Systematic study on the electronic structure and mechanical properties of X2BC (X = Mo, Ti, V, Zr, Nb, Hf, Ta and W). J. Physics: Condens. Matter 2012, 25, 045501. [Google Scholar] [CrossRef]
- Mitterer, C.; Mayrhofer, P.; Beschliesser, M.; Losbichler, P.; Warbichler, P.; Hofer, F.; Gibson, P.; Gissler, W.; Hruby, H.; Musil, J.; et al. Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings. Surf. Coat. Technol. 1999, 120, 405–411. [Google Scholar] [CrossRef]
- Ok, J.T.; Park, I.W.; Moore, J.J.; Kang, M.C.; Kim, K.H. Syntheses and mechanical properties of Ti–B–C coatings by a plasma-enhanced chemical vapor deposition. Surf. Coat. Technol. 2005, 200, 1418–1423. [Google Scholar] [CrossRef]
- Shimada, S.; Takahashi, M.; Tsujino, J.; Yamazaki, I.; Tsuda, K. Deposition and wear resistance of Ti–B–N–C coatings on WC–Co cutting tools from alkoxide solutions by thermal plasma CVD. Surf. Coat. Technol. 2007, 201, 7194–7200. [Google Scholar] [CrossRef]
- Abad, M.D.; Cáceres, D.; Pogozhev, Y.S.; Shtansky, D.V.; Sánchez-López, J.C. Bonding structure and mechanical properties of Ti–B–C coatings. Plasma Process. Polym. 2009, 6, S107–S112. [Google Scholar] [CrossRef] [Green Version]
- Lauridsen, J.; Nedfors, N.; Jansson, U.; Jensen, J.; Eklund, P.; Hultman, L. Ti–B–C nanocomposite coatings deposited by magnetron sputtering. Appl. Surf. Sci. 2012, 258, 9907–9912. [Google Scholar] [CrossRef] [Green Version]
- Friedemann, M.; Klostermann, H. Composition and mechanical properties of BCW and BC–Ti thin films prepared by pulse magnetron sputtering. Surf. Coat. Technol. 2016, 308, 115–120. [Google Scholar] [CrossRef]
- Contreras, E.; Galindez, Y.; Gómez, M. Microstructure, mechanical and tribological properties of TiBC coatings by DC magnetron sputtering onto AISI M2 steel using independent TiB2 and graphite targets. Surf. Coat. Technol. 2018, 350, 298–306. [Google Scholar] [CrossRef]
- Buršík, J.; Buršíková, V.; Souček, P.; Zábranský, L.; Vašina, P. Characterization of Ta–B–C nanostructured hard coatings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 175, 012020. [Google Scholar] [CrossRef]
- Nedfors, N.; Tengstrand, O.; Eklund, P.; Hultman, L.; Jansson, U. Nb–B–C thin films for electrical contact applications deposited by magnetron sputtering. J. Vac. Sci. Technol. A 2014, 32, 041503. [Google Scholar] [CrossRef] [Green Version]
- Alishahi, M.; Mirzaei, S.; Souček, P.; Zábranskỳ, L.; Buršíková, V.; Stupavská, M.; Peřina, V.; Balázsi, K.; Czigány, Z.; Vašina, P. Evolution of structure and mechanical properties of hard yet fracture resistant W–B–C coatings with varying C/W ratio. Surf. Coat. Technol. 2018, 340, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Debnárová, S.; Souček, P.; Vašina, P.; Zábranskỳ, L.; Buršíková, V.; Mirzaei, S.; Pei, Y. The tribological properties of short range ordered WBC protective coatings prepared by pulsed magnetron sputtering. Surf. Coat. Technol. 2019, 357, 364–371. [Google Scholar] [CrossRef]
- Mirzaei, S.; Alishahi, M.; Souček, P.; Zábranskỳ, L.; Buršíková, V.; Stupavská, M.; Peřina, V.; Balázsi, K.; Czigány, Z.; Vašina, P. Effect of bonding structure on hardness and fracture resistance of WBC coatings with varying B/W ratio. Surf. Coat. Technol. 2019, 358, 843–849. [Google Scholar] [CrossRef]
- Kroker, M.; Czigány, Z.; Weiss, Z.; Fekete, M.; Souček, P.; Balázsi, K.; Sochora, V.; Jílek, M.; Vašina, P. On the origin of multilayered structure of WBC coatings prepared by non-reactive magnetron sputtering from a single segmented target. Surf. Coat. Technol. 2019, 377, 124864. [Google Scholar] [CrossRef]
- Debnárová, S.; Zábranskỳ, L.; Souček, P.; Buršíková, V.; Vašina, P. Study of WBC thin films prepared by magnetron sputtering using a combinatorial approach. Int. J. Refract. Met. Hard Mater. 2019, 85, 105066. [Google Scholar] [CrossRef]
- Mirzaei, S.; Alishahi, M.; Souček, P.; Ženíšek, J.; Holec, D.; Koutná, N.; Buršíková, V.; Stupavská, M.; Zábranskỳ, L.; Burmeister, F.; et al. The effect of chemical composition on the structure, chemistry and mechanical properties of magnetron sputtered WBC coatings: Modeling and experiments. Surf. Coat. Technol. 2020, 383, 125274. [Google Scholar] [CrossRef]
- Lin, S.T.; Lee, C. Growth of tantalum boride films by RF magnetron sputtering effect of bias. J. Electrochem. Soc. 2003, 150, G607–G611. [Google Scholar] [CrossRef]
- Goncharov, A.; Ignatenko, P.; Petukhov, V.; Konovalov, V.; Volkova, G.; Stupak, V.; Glazunova, V. Composition, structure, and properties of tantalum boride nanostructured films. Tech. Phys. 2006, 51, 1340–1343. [Google Scholar] [CrossRef]
- Du, S.; Zhang, K.; Wen, M.; Qin, Y.; Li, R.; Jin, H.; Bao, X.; Ren, P.; Zheng, W. Optimizing the tribological behavior of tantalum carbide coating for the bearing in total hip joint replacement. Vacuum 2018, 150, 222–231. [Google Scholar] [CrossRef]
- Vargas, M.; Castillo, H.; Restrepo-Parra, E.; De La Cruz, W. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering. Appl. Surf. Sci. 2013, 279, 7–12. [Google Scholar] [CrossRef]
- Poladi, A.; Semnani, H.M.; Emadoddin, E.; Mahboubi, F.; Ghomi, H. Nanostructured TaC film deposited by reactive magnetron sputtering: Influence of gas concentration on structural, mechanical, wear and corrosion properties. Ceram. Int. 2019, 45, 8095–8107. [Google Scholar] [CrossRef]
- Greene, J.E. Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A Vac. Surf. Films 2017, 35, 05C204. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.M.; Sologubenko, A.S.; Gerstl, S.S.; Süess, M.J.; Courty, D.; Spolenak, R. Nanoscale Cu/Ta multilayer deposition by co-sputtering on a rotating substrate. Empirical model and experiment. Surf. Coat. Technol. 2016, 302, 284–292. [Google Scholar] [CrossRef]
- Eriksson, A.; Zhu, J.; Ghafoor, N.; Johansson, M.; Sjölen, J.; Jensen, J.; Odén, M.; Hultman, L.; Rosén, J. Layer formation by resputtering in Ti–Si–C hard coatings during large scale cathodic arc deposition. Surf. Coat. Technol. 2011, 205, 3923–3930. [Google Scholar] [CrossRef] [Green Version]
- Hans, M.; to Baben, M.; Chen, Y.T.; Pradeep, K.G.; Holzapfel, D.M.; Primetzhofer, D.; Kurapov, D.; Ramm, J.; Arndt, M.; Rudigier, H.; et al. Substrate rotation-induced chemical modulation in Ti–Al–ON coatings synthesized by cathodic arc in an industrial deposition plant. Surf. Coat. Technol. 2016, 305, 249–253. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Shtansky, D.V.; Levashov, E.A.; Moore, J.J. Nanostructured Thin Films and Nanodispersion Strengthened Coatings; Volume 155 of NATO Science Series II: Mathematics, Physics and Chemistry; Springer Science & Business Media: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Zhang, X.; Hilmas, G.E.; Fahrenholtz, W.G. Synthesis, densification, and mechanical properties of TaB2. Mater. Lett. 2008, 62, 4251–4253. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der grosse und der inneren struktur von kolloidterilchen mittels rontgestrahlen. Nachrichten Von Der Ges. Der Wiss. Zu Göttingen Math. Phys. Kl. 1918, 1918, 98–100. [Google Scholar]
- Oliver, W.; Pharr, G. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Stoney, G.G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1909, 82, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Janssen, G.C.; Abdalla, M.M.; van Keulen, F.; Pujada, B.R.; van Venrooy, B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Film. 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Baker, M. Advanced characterisation of nanocomposite coatings. Surf. Coat. Technol. 2007, 201, 6105–6111. [Google Scholar] [CrossRef] [Green Version]
- Petrov, I.; Barna, P.; Hultman, L.; Greene, J. Microstructural evolution during film growth. J. Vac. Sci. Technol. A Vac. Surf. Films 2003, 21, S117–S128. [Google Scholar] [CrossRef]
- Pei, Y.; Shaha, K.; Chen, C.; Van der Hulst, R.; Turkin, A.; Vainshtein, D.; De Hosson, J.T.M. Growth of nanocomposite films: From dynamic roughening to dynamic smoothening. Acta Mater. 2009, 57, 5156–5164. [Google Scholar] [CrossRef]
- Veprek, S.; Zhang, R.; Veprek-Heijman, M.; Sheng, S.; Argon, A. Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surf. Coat. Technol. 2010, 204, 1898–1906. [Google Scholar] [CrossRef]
- Souček, P.; Daniel, J.; Hnilica, J.; Bernátová, K.; Zábranskỳ, L.; Buršíková, V.; Stupavská, M.; Vašina, P. Superhard nanocomposite nc-TiC/aC: H coatings: The effect of HiPIMS on coating microstructure and mechanical properties. Surf. Coat. Technol. 2017, 311, 257–267. [Google Scholar] [CrossRef]
- Storms, E.K. The Refractory Carbides; Refractory Materials 2; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Bakshi, S.R.; Musaramthota, V.; Lahiri, D.; Singh, V.; Seal, S.; Agarwal, A. Spark plasma sintered tantalum carbide: Effect of pressure and nano-boron carbide addition on microstructure and mechanical properties. Mater. Sci. Eng. A 2011, 528, 1287–1295. [Google Scholar] [CrossRef]
- Laszkiewicz-Łukasik, J.; Jaworska, L.; Putyra, P.; Klimczyk, P.; Garzeł, G. The influence of SPS heating rates on the synthesis reaction of tantalum diboride. Boletín De La Soc. Espa Nola De Cerámica Y Vidr. 2016, 55, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Zábranskỳ, L.; Buršíková, V.; Souček, P.; Vašina, P.; Buršík, J. On the study of the mechanical properties of Mo–BC coatings. Eur. Phys. J. Appl. Phys. 2016, 75, 24716. [Google Scholar] [CrossRef]
- Carlton, C.; Ferreira, P.J. What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 2007, 55, 3749–3756. [Google Scholar] [CrossRef]
- Jacobsohn, L.; Nastasi, M. Sputter-deposited boron carbide films: Structural and mechanical characterization. Surf. Coat. Technol. 2005, 200, 1472–1475. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Chung, Y.W.; Zhang, Y.; Ouyang, S.; Xiao, Z.; Song, K.; Li, P. Microstructure, hardness and toughness of boron carbide thin films deposited by pulse dc magnetron sputtering. Ceram. Int. 2016, 42, 6342–6346. [Google Scholar] [CrossRef]
- Gupta, B.; Bhushan, B. Micromechanical properties of amorphous carbon coatings deposited by different deposition techniques. Thin Solid Film. 1995, 270, 391–398. [Google Scholar] [CrossRef]
- Mattox, D. Particle bombardment effects on thin-film deposition: A review. J. Vac. Sci. Technol. A Vac. Surf. Films 1989, 7, 1105–1114. [Google Scholar] [CrossRef]
- Ennos, A.E. Stresses developed in optical film coatings. Appl. Opt. 1966, 5, 51–61. [Google Scholar] [CrossRef]
- Abadias, G.; Michel, A.; Tromas, C.; Jaouen, C.; Dub, S. Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surf. Coat. Technol. 2007, 202, 844–853. [Google Scholar] [CrossRef]
- Soucek, P.; Zabransky, L.; Bursikova, V.; Bursik, J.; Debnarova, S.; Svoboda, M.; Perina, V.; Vasina, P. Fracture resistance enhancement in hard Mo–BC coatings tailored by composition and microstructure. J. Nanomater. 2018, 2018, 5184584. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroker, M.; Souček, P.; Matej, P.; Zábranský, L.; Czigány, Z.; Balázsi, K.; Vašina, P. Composition, Structure and Mechanical Properties of Industrially Sputtered Ta–B–C Coatings. Coatings 2020, 10, 853. https://doi.org/10.3390/coatings10090853
Kroker M, Souček P, Matej P, Zábranský L, Czigány Z, Balázsi K, Vašina P. Composition, Structure and Mechanical Properties of Industrially Sputtered Ta–B–C Coatings. Coatings. 2020; 10(9):853. https://doi.org/10.3390/coatings10090853
Chicago/Turabian StyleKroker, Michael, Pavel Souček, Pavol Matej, Lukáš Zábranský, Zsolt Czigány, Katalin Balázsi, and Petr Vašina. 2020. "Composition, Structure and Mechanical Properties of Industrially Sputtered Ta–B–C Coatings" Coatings 10, no. 9: 853. https://doi.org/10.3390/coatings10090853
APA StyleKroker, M., Souček, P., Matej, P., Zábranský, L., Czigány, Z., Balázsi, K., & Vašina, P. (2020). Composition, Structure and Mechanical Properties of Industrially Sputtered Ta–B–C Coatings. Coatings, 10(9), 853. https://doi.org/10.3390/coatings10090853