Polysiloxane Hybrids via Sol-Gel Process: Effect of Temperature on Network Formation
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Pure Reagents
3.2. Network Formation of the Polysiloxane Hybrid Materials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Figueira, R.; Fontinha, I.; Silva, C.; Pereira, E. Hybrid sol-gel coatings: Smart and green materials for corrosion Mitigation. Coatings 2016, 6, 12. [Google Scholar] [CrossRef]
- Sanchez, C.; Ribot, F. Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 1994, 18, 1007–1047. [Google Scholar]
- Álvarez, D.; Collazo, A.; Pérez, C. Structural characterization and barrier properties of hybrid sol-gel films applied on tinplate. Surf. Coat. Technol. 2017, 321, 108–117. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Jannesari, A.; Ranjbar, Z.; Sobhani, S.; Saeb, M.R. Anti-corrosion hybrid coatings based on epoxy–silica nano-composites: Toward relationship between the morphology and EIS data. Prog. Org. Coat. 2014, 77, 1169–1183. [Google Scholar] [CrossRef]
- Lin, W.; Zheng, J.; Zhuo, J.; Chen, H.; Zhang, X. Characterization of sol-gel ORMOSIL antireflective coatings from phenyltriethoxysilane and tetraethoxysilane: Microstructure control and application. Surf. Coat. Technol. 2018, 345, 177–182. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, W.; Zheng, J.; Sun, Y.; Xia, B.; Yan, L.; Jiang, B. Insight into the organic–inorganic hybrid and microstructure tailor mechanism of sol-gel ORMOSIL antireflective coatings. J. Phys. Chem. C 2018, 122, 596–603. [Google Scholar] [CrossRef]
- Tiwari, I.; Mahanwar, P.A. Polyacrylate/silica hybrid materials: A step towards multifunctional properties. J. Dispers. Sci. Technol. 2019, 40, 925–957. [Google Scholar] [CrossRef]
- Coan, T.; Barroso, G.S.; Machado, R.A.F.; de Souza, F.S.; Spinelli, A.; Mothz, G. A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Prog. Org. Coat. 2015, 89, 220–230. [Google Scholar] [CrossRef]
- Sarmento, V.H.V.; Dahmouche, K.; Santilli, C.V.; Pulcinelli, S.H.; Craievich, A.F. Small-angle X-ray and nuclear-magnetic resonance study of siloxane-PMMA hybrids prepared by the sol-gel process. J. Appl. Crystallogr. 2003, 36, 473–477. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Sanz, J.; Bastidas, J.M. Steel protection using sol-gel coatings in simulated concrete pore solution contaminated with chloride. Surf. Coat. Technol. 2014, 258, 485–494. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Sobhani, S.; Jannesari, A.; Pakdel, A.S.; Sari, M.G.; Saeb, M.R. Structure–property relationship in epoxy-silica hybrid nanocomposites: The role of organic solvent in achieving silica domains. J. Vinyl Addit. Technol. 2015, 21, 305–313. [Google Scholar] [CrossRef]
- Mota, T.L.R.; Gomes, A.L.M.; Palhares, H.G.; Nunes, E.H.M.; Houmard, M. Influence of the synthesis parameters on the mesoporous structure and adsorption behavior of silica xerogels fabricated by sol-gel technique. J. Sol Gel Sci.Technol. 2019, 92, 681–694. [Google Scholar] [CrossRef]
- Favini, V.S.; de Aguiar, M.M.; Vianna, D.R.; Lira, C. Taguchi design applied to process parameters optimization of sol-gel anticorrosive films. J. Sol Gel Sci.Technol. 2019, 91, 407–414. [Google Scholar] [CrossRef]
- Sarmento, V.; Frigerio, M.; Dahmouche, K.; Pulcinelli, S.H.; Santilli, C.V. Evolution of rheological properties and local structure during gelation of siloxane-polymethylmethacrylate hybrid materials. J. Sol Gel Sci. Technol. 2006, 37, 179–184. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Bastidas, J.M.; Sanz, J. Steel corrosion in simulated carbonated concrete pore solution its protection using sol-gel coatings. Prog. Org. Coat. 2015, 88, 228–236. [Google Scholar] [CrossRef]
- De Graeve, I.; Vereecken, J.; Franquet, A.; Van Schaftinghen, T.; Terryn, H. Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Prog. Org. Coat. 2007, 59, 224–229. [Google Scholar] [CrossRef]
- Kunst, S.R.; Ribeiro Piaggio Cardoso, H.; Beltrami, L.V.R.; Trindade Oliveira, C.; Tiago Lemes, M.; Zoppas Ferreira, J.; de Fraga Malfatti, C. New sol-gel formulations to increase the barrier effect of a protective coating against the corrosion and wear of galvanized steel. Mater. Res. 2015, 18, 138–150. [Google Scholar] [CrossRef]
- Babonneau, F. Hybrid siloxane-oxide materials via sol-gel processing: Structural characterization. Polyhedron 1994, 13, 1123–1130. [Google Scholar] [CrossRef]
- Chang, T.; Wang, Y.; Hong, Y.; Wu, K.; Wu, T. Organic-inorganic hybrid materials 4: NMR study of the Poly (imide-silica) hybrids. Inter. J. Polym. Anal. Charact. 2001, 6, 403–413. [Google Scholar] [CrossRef]
- Metroke, T.L.; Parkhill, R.L.; Knobbe, E.T. Synthesis of hybrid organic-inorganic sol-gel coatings for corrosion resistance. MRS Proc. Libr. Arch. 2011, 576, 293. [Google Scholar] [CrossRef]
- Rodič, P.; Iskra, J.; Milošev, I. Study of a sol-gel process in the preparation of hybrid coatings for corrosion protection using FTIR and 1H NMR methods. J. Non-Cryst. Solids 2014, 396, 25–35. [Google Scholar] [CrossRef]
- Sassi, Z.; Bureau, J.C.; Bakkali, A. Spectroscopic study of TMOS–TMSM–MMA gels: Previously identification of the networks inside the hybrid material. Vib. Spectrosc. 2002, 28, 299–318. [Google Scholar] [CrossRef]
- Carvalho, H.W.P.; Suzana, A.F.; Santilli, C.V.; Pulcinelli, S.H. Structure and thermal behavior of PMMA–polysilsesquioxane organic–inorganic hybrids. Polym. Degrad. Stab. 2014, 104, 112–119. [Google Scholar] [CrossRef]
- Oubaha, M.; Smaıhi, M.; Etienne, P.; Coudray, P.; Moreau, Y. Spectroscopic characterization of intrinsic losses in an organic–inorganic hybrid waveguide synthesized by the sol-gel process. J. Non-Cryst. Solids 2003, 318, 305–313. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Bastidas, J.M.; Sanz, J. Corrosion behaviour of coated steel rebars in carbonated and chloride-contaminated alkali-activated fly ash mortar. Prog. Org. Coat. 2016, 99, 11–22. [Google Scholar] [CrossRef]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one-and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Innocenzi, P.; Brusatin, G.; Licoccia, S.; Di Vona, M.L.; Babonneau, F.; Alonso, B. Controlling the thermal polymerization process of hybrid organic–inorganic films synthesized from 3-methacryloxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane. Chem. Mater. 2003, 15, 4790–4797. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Borovin, E.; Callone, E.; Ceccato, R.; Quaranta, A.; Dire, S. Adsorptive properties of sol-gel derived hybrid organic/inorganic coatings. Mater. Chem. Phys. 2014, 147, 954–962. [Google Scholar] [CrossRef]
- Engelhardt, G. Solid state NMR spectroscopy applied to zeolites. In Studies in Surface Science and Catalysis; Elsevier: London, UK, 2001; Volume 137, pp. 387–418. [Google Scholar]
- Pellice, S.A.; Williams, R.J.; Sobrados, I.; Sanz, J.; Castro, Y.; Aparicio, M.; Durán, A. Solutions of hybrid silica microgels as precursors of sol-gel coatings. J. Mater. Chem. 2006, 16, 3318–3325. [Google Scholar] [CrossRef][Green Version]
- Sarmento, V.; Schiavetto, M.; Hammer, P.; Benedetti, A.V.; Fugivara, C.S.; Suegama, P.; Pulcinelli, S.H.; Santilli, C.V. Corrosion protection of stainless steel by polysiloxane hybrid coatings prepared using the sol-gel process. Surf. Coat. Technol. 2010, 204, 2689–2701. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Sanz, J. Polymerization of hybrid organic–inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Prog. Org. Coat. 2014, 77, 880–891. [Google Scholar] [CrossRef]
- Han, Y.-H.; Taylor, A.; Mantle, M.D.; Knowles, K.M. UV curing of organic–inorganic hybrid coating materials. J. Sol Gel Sci.Technol. 2007, 43, 111–123. [Google Scholar] [CrossRef]
Time | Proportions (%) | ||||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | Q1 | Q2 | Q3 | Q4 | |
0 min | 30.06 | 16.46 | – | 17.36 | 26.53 | 9.58 | – |
1 h 30 min | 18.08 | 34.44 | – | – | 27.29 | 20.20 | – |
3 h | 12.04 | 33.84 | 9.71 | – | 21.06 | 23.34 | – |
4 h 30 min | 12.97 | 34.83 | 9.97 | – | 19.69 | 22.55 | – |
7 h | 4.89 | 33.82 | 17.6 | – | 17.43 | 26.26 | – |
25 h | – | 31.03 | 24.73 | – | 14.84 | 29.40 | – |
3 d | – | 32.13 | 27.81 | – | 11.91 | 28.16 | – |
45 d | – | 18.81 | 46.57 | – | – | 23.18 | 11.43 |
Time | Proportions (%) | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | Q3 | Q4 | |
4 h | – | 39.6 | 32.36 | 16.53 | 11.51 |
24 h | 4.89 | 30.53 | 33.58 | 18.60 | 12.40 |
72 h | 8.85 | 26.56 | 30.01 | 19.66 | 14.92 |
7 d | 4.64 | 29.17 | 31.53 | 17.88 | 16.79 |
11 d | 4.84 | 26.97 | 28.96 | 23.79 | 15.44 |
Treatment | Thickness (µm) | Composition | |
---|---|---|---|
C (%) | Si (%) | ||
25 °C for 45 d | 1.3 ± 0.2 | 48.1 ± 1.1 | 10.2 ± 0.5 |
65 °C for 4 h | 1.4 ± 0.5 | 51.7 ± 0.3 | 12.3 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criado, M.; Sobrados, I.; Sanz, J. Polysiloxane Hybrids via Sol-Gel Process: Effect of Temperature on Network Formation. Coatings 2020, 10, 677. https://doi.org/10.3390/coatings10070677
Criado M, Sobrados I, Sanz J. Polysiloxane Hybrids via Sol-Gel Process: Effect of Temperature on Network Formation. Coatings. 2020; 10(7):677. https://doi.org/10.3390/coatings10070677
Chicago/Turabian StyleCriado, Maria, Isabel Sobrados, and Jesus Sanz. 2020. "Polysiloxane Hybrids via Sol-Gel Process: Effect of Temperature on Network Formation" Coatings 10, no. 7: 677. https://doi.org/10.3390/coatings10070677
APA StyleCriado, M., Sobrados, I., & Sanz, J. (2020). Polysiloxane Hybrids via Sol-Gel Process: Effect of Temperature on Network Formation. Coatings, 10(7), 677. https://doi.org/10.3390/coatings10070677