Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium Iodide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photon 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Chen, Q.; Marco, N.D.; Yang, Y.M.; Song, T.B.; Chen, C.C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic—Inorganic hybrid halide perovskite for optoelectronic applications. Nanotoday 2015, 10, 355–396. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; He, M.; Peng, J.; Sun, Y.; Liang, Z. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3, 1500392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliba, M.; Correa-Baena, J.P.; Wolff, C.M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Ababe, A. How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem. Mater. 2018, 30, 4193–4201. [Google Scholar] [CrossRef]
- Wu, C.; Chen, K.; Guo, D.Y.; Wang, S.L.; Li, P.G. Cations substitution tuning phase stability in hybrid perovskite single crystals by strain relaxation. RSC Adv. 2018, 8, 2900–2905. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ye, Q.; Chu, Z.; Gao, F.; Zhang, X.; You, J. Recent progress in high-efficiency planar-structure perovskite solar cells. Energy Environ. Mater. 2019, 2, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.T.; Weber, O.J.; Frost, J.M.; Walsh, A. Cubic perovskite structure of black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 2015, 6, 3209–3212. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J.Z.; Kim, J.; Voznyy, O.; Gong, X.; Quan, L.N.; Tan, C.S.; et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature 2018, 9, 1607. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zheng, X.; Yao, F.; Ma, J.; Tao, C.; Fang, G. Methylammonium, formamidinium and ethylenediamine mixed triple-cation perovskite solar cells with high efficiency and remarkable stability. J. Mater. Chem. A 2018, 6, 17625–17632. [Google Scholar] [CrossRef]
- Shao, S.; Dong, J.; Duim, H.; Brink, G.H.T.; Black, G.R.; Portale, G.; Loi, M.A. Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano Energy 2019, 60, 810–816. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Prochowicz, D.; Sponseller, M.; Osherov, A.; Bulovic, V.; Kong, J. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803587. [Google Scholar] [CrossRef]
- Lu, Y.A.; Chang, T.H.; Wu, S.H.; Liu, C.C.; Lai, K.W.; Chang, Y.C.; Lu, H.C.; Chu, C.W.; Ho, K.C. Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy 2019, 58, 138–146. [Google Scholar] [CrossRef]
- Alharbi, E.A.; Alyamani, A.Y.; Kubicki, D.J.; Uhl, A.R.; Walder, B.J.; Alanazi, A.Q.; Luo, J.; Burgos-Caminal, A.; Albadri, A.; Albrithen, H.; et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 2019, 10, 3008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, T.; Suzuki, A.; Ueoka, N.; Oku, T. Effects of guanidinium addition to CH3NH3PbI3-xClx perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 2019, 127, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Ayguler, M.F.; Petrus, M.L.; Bein, T.; Docampo, P. Impact of rubidium and cesium cations on the moisture stability of multiple-cation mixed-halide perovskites. ACS Energy Lett. 2017, 2, 2212–2218. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Hutter, E.M.; Rieder, P.; Grill, I.; Hanisch, J.; Ayguler, M.F.; Hufnagel, A.G.; Handloser, M.; Bein, T.; Hartschuh, A.; et al. Understanding the role of cesium and rubidium additives in perovskite solar cells: Trap states, charge transport, and recombination. Adv. Energy Mater. 2018, 8, 1703057. [Google Scholar] [CrossRef]
- Zhao, W.; Yao, Z.; Yu, F.; Yang, D.; Liu, S.F. Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Adv. Sci. 2018, 5, 1700131. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.; Zou, X.; Cheng, J.; Yang, Y.; Ren, H.; Chen, D. Modulating surface morphology related to crystallization speed of perovskite grain and semiconductor properties of optical absorber layer under controlled doping of potassium ions for solar cells. Materials 2018, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Machiba, H.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chem. Phys. Lett. 2019, 730, 117–123. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T.; Suzuki, A. Additive effects of alkali metals on Cu-modified CH3NH3PbI3-δClδ photovoltaic devices. RSC Adv. 2019, 9, 24231–24240. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.L.; Chang, C.C.; Chen, C.P.; Jiang, B.H.; Jeng, R.J.; Cheng, C.H. High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive. J. Mater. Chem. A 2015, 3, 9271–9277. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, G.; Chen, X.; Zhang, B.; Alsaedi, A.; Hayat, T.; Pan, X.; Dai, S. High-performance mixed-dimensional perovskite solar cells with enhanced stability against humidity, heat and UV light. J. Mater. Chem. A 2018, 6, 20233–20241. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Li, G.; Xu, F.; Li, Y.; Yang, Y.; Zhao, Y. A mixed-cation lead iodide MA1−xEAxPbI3 absorber for perovskite solar cells. J. Energy Chem. 2018, 27, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Li, Q.; Wu, K. Ethylammonium as an alternative cation for efficient perovskite solar cells from first-principles calculations. RSC Adv. 2019, 9, 7356–7361. [Google Scholar] [CrossRef] [Green Version]
- Dhar, A.; Dey, A.; Maiti, P.; Paul, P.K.; Roy, S.; Paul, S.; Vekariya, R.L. Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell. Ionics 2018, 24, 1227–1233. [Google Scholar] [CrossRef]
- Arkan, F.; Mohammad, I. Computational modeling of the photovoltaic activities in EABX3 (EA = ethylammonium, B = Pb, Sn, Ge, X = Cl, Br, I) perovskite solar cells. Comput. Mater. Sci. 2018, 152, 324–330. [Google Scholar] [CrossRef]
- Zhang, F.; Cong, J.; Li, Y.; Bergstrand, J.; Liu, H.; Cai, B.; Hajian, A.; Yao, Z.; Wang, L.; Hao, Y.; et al. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy 2018, 53, 405–414. [Google Scholar] [CrossRef]
- Liu, F.; Dong, Q.; Wong, M.K.; Djiurisic, A.B.; Ng, A.; Ren, Z.; Shen, Q.; Surya, C.; Chan, W.K.; Wang, J.; et al. Perovskite solar cells: Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 2016, 6, 1502206. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T. Stability characterization of PbI2-added CH3NH3PbI3−xClx photovoltaic devices. ACS Appl. Mater. Interfaces 2018, 10, 44443–44451. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Mon. Chem. 2017, 148, 795–826. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Zhang, T.; Li, G.; Zhao, Y. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J. Mater. Chem. A 2017, 5, 11450–11461. [Google Scholar] [CrossRef]
- Sampson, M.D.; Park, J.S.; Schaller, R.D.; Chan, M.K.Y.; Martinson, A.B.F. Transition metal-substituted lead halide perovskite absorbers. J. Mater. Chem. A 2017, 5, 3578–3588. [Google Scholar] [CrossRef]
- Tanaka, H.; Oku, T.; Ueoka, N. Structural stabilities of organic–inorganic perovskite crystals. Jpn. J. Appl. Phys. 2018, 57, 08RE12. [Google Scholar] [CrossRef]
- Oku, T. Crystal structures of perovskite halide compounds used for solar cells. Rev. Adv. Mater. Sci. 2020, 59. in press. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Taguchi, M.; Suzuki, A.; Oku, T.; Fukunishi, S.; Minami, S.; Okita, M. Effects of decaphenylcyclopentasilane addition on photovoltaic properties of perovskite solar cells. Coatings 2018, 8, 461. [Google Scholar] [CrossRef] [Green Version]
- Oku, T.; Nomura, J.; Suzuki, A.; Tanaka, H.; Fukunishi, S.; Minami, S.; Tsukada, S. Fabrication and characterization of CH3NH3PbI3 perovskite solar cells added with polysilanes. Int. J. Photoenergy 2018, 1155, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, M.; Suzuki, A.; Oku, T.; Ueoka, N.; Minami, S.; Okita, M. Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chem. Phys. Lett. 2019, 737, 136822. [Google Scholar] [CrossRef]
- Oku, T.; Ohishi, Y.; Ueoka, N. Highly (100)-oriented CH3NH3PbI3 (Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Adv. 2018, 8, 10389–10395. [Google Scholar] [CrossRef] [Green Version]
- Oku, T.; Ohishi, Y. Effects of annealing on CH3NH3PbI3 (Cl) perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 2018, 126, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Oku, T.; Ueoka, N.; Suzuki, K.; Suzuki, A.; Yamada, M.; Sakamoto, H.; Minami, S.; Fukunishi, S.; Kohno, K.; Miyauchi, S. Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticle layers. AIP Conf. Proc. 2017, 1807, 020014-1–020014-7. [Google Scholar]
- Ueoka, N.; Oku, T.; Suzuki, A.; Sakamoto, H.; Yamada, M.; Minami, S.; Miyauchi, S. Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Cl) perovskite solar cells with TiO2 nanoparticle layers. Jpn. J. Appl. Phys. 2018, 57, 02CE03-1–02CE03-7. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T.; Tanaka, H.; Suzuki, A.; Sakamoto, H.; Yamada, M.; Minami, S.; Miyauchi, S.; Tsukada, S. Effects of PbI2 addition and TiO2 electron transport layers for perovskite solar cells. Jpn. J. Appl. Phys. 2018, 57, 08RE05-1–08RE05-7. [Google Scholar] [CrossRef]
- Ren, Y.; Oswald, I.W.H.; Wang, X.; McCandless, G.T.; Chan, J.Y. Orientation of organic cations in hybrid inorganic−organic perovskite CH3NH3PbI3 from subatomic resolution single crystal neutron diffraction structural studies. Cryst. Growth Des. 2016, 16, 2945–2951. [Google Scholar] [CrossRef]
- Oku, T.; Zushi, M.; Imanishi, Y.; Suzuki, A.; Suzuki, K. Microstructures and photovoltaic properties of perovskite-type CH3NH3PbI3 compounds. Appl. Phys. Express 2014, 7, 121601. [Google Scholar] [CrossRef]
- Oku, T.; Ohishi, Y.; Suzuki, A. Effects of antimony addition to perovskite-type CH3NH3PbI3 photovoltaic devices. Chem. Lett. 2016, 45, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Jodlowski, A.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; Miguel, G.; Nazeeruddin, M. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Jalebi, M.A.; Garmaroudi, Z.A.; Pearson, A.J.; Divitini, G.; Cacovich, S.; Philippe, B.; Rensmo, H.; Ducati, C.; Friend, R.H.; Stranks, S.D. Potassium- and rubidium-passivated alloyed perovskite films: Optoelectronic properties and moisture stability. ACS Energy Lett. 2018, 3, 2671–2678. [Google Scholar] [CrossRef]
Composition of Perovskite | EABr (%) | FAI (%) | t-Factor |
---|---|---|---|
MAPbI3 | 0 | 0 | 0.912 |
MA0.9FA0.1PbI3 | 0 | 10 | 0.919 |
MA0.8FA0.2PbI3 | 0 | 20 | 0.927 |
MA0.5FA0.5PbI3 | 0 | 50 | 0.949 |
MA0.8FA0.1EA0.1PbI2.7Br0.3 | 10 | 10 | 0.933 |
MA0.75FA0.2EA0.05PbI2.85Br0.15 | 5 | 20 | 0.933 |
MA0.7FA0.2EA0.1PbI2.7Br0.3 | 10 | 20 | 0.940 |
MA0.6FA0.2EA0.2PbI2.4Br0.6 | 20 | 20 | 0.954 |
MA0.75FA0.2EA0.05PbI2.85Cl0.15 | 5 | 20 | 0.934 |
MA0.7FA0.2EA0.1PbI2.7Cl0.3 | 10 | 20 | 0.941 |
Device | JSC (mA·cm−2) | VOC (V) | FF | RS (Ω·cm2) | RSh (Ω·cm2) | η (%) | ηave (%) |
---|---|---|---|---|---|---|---|
Standard | 19.2 | 0.687 | 0.509 | 8.8 | 337 | 6.72 | 6.35 |
+FAI 10% | 21.8 | 0.816 | 0.574 | 6.2 | 1663 | 10.24 | 8.04 |
+FAI 20% | 21.5 | 0.922 | 0.719 | 3.4 | 4839 | 14.25 | 13.66 |
+FAI 50% | 15.7 | 0.926 | 0.712 | 4.7 | 13,545 | 10.36 | 10.31 |
EABr 10% + FAI 10% | 19.9 | 0.946 | 0.660 | 6.1 | 4667 | 12.43 | 12.23 |
EABr 5% + FAI 20% | 21.0 | 0.834 | 0.648 | 5.6 | 4952 | 11.33 | 10.63 |
EABr 10% + FAI 20% | 19.3 | 0.789 | 0.572 | 5.7 | 1015 | 8.47 | 8.70 |
EABr 20% + FAI 20% | 18.1 | 0.851 | 0.562 | 4.8 | 2340 | 8.68 | 8.27 |
EACl 5% + FAI 20% | 20.4 | 0.879 | 0.618 | 6.4 | 1879 | 11.06 | 10.63 |
EACl 10% + FAI 20% | 20.2 | 0.933 | 0.647 | 5.2 | 66,637 | 12.21 | 11.64 |
Device | JSC (mA·cm−2) | VOC (V) | FF | RS (Ω·cm2) | RSh (Ω·cm2) | η (%) | ηave (%) |
---|---|---|---|---|---|---|---|
Standard | 19.0 | 0.633 | 0.474 | 8.9 | 212 | 5.69 | 5.25 |
+FAI 10% | 17.3 | 0.925 | 0.615 | 8.7 | 5123 | 9.85 | 9.30 |
+FAI 20% | 20.7 | 0.961 | 0.675 | 4.6 | 2455 | 13.43 | 13.30 |
+FAI 50% | 14.8 | 0.964 | 0.684 | 6.0 | 75,968 | 9.74 | 8.99 |
EABr 10% + FAI 10% | 17.3 | 0.925 | 0.615 | 8.7 | 5123 | 9.85 | 9.30 |
EABr 5% + FAI 20% | 18.6 | 0.919 | 0.699 | 5.2 | 19,971 | 11.93 | 11.41 |
EABr 10% + FAI 20% | 18.2 | 0.819 | 0.564 | 7.6 | 1129 | 8.39 | 6.86 |
EABr 20% + FAI 20% | 18.2 | 0.870 | 0.585 | 6.6 | 946 | 9.26 | 8.77 |
EACl 5% + FAI 20% | 17.3 | 0.900 | 0.682 | 5.1 | 4097 | 10.62 | 9.98 |
EACl 10% + FAI 20% | 17.0 | 0.932 | 0.664 | 5.8 | 5407 | 10.54 | 9.49 |
Perovskites | Lattice Constant a (Å) | Crystallite Size D200 (Å) | Orientation I100/I210 |
---|---|---|---|
Standard | 6.274(1) | 479 | 48 |
+FAI 20% | 6.286(1) | 647 | 1694 |
EABr 5% + FAI 20% | 6.281(0) | 528 | 460 |
EABr 10% + FAI 20% | 6.283(1) | 1506 | 1155 |
EABr 20% + FAI 20% | 6.280(2) | 830 | 1939 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, K.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium Iodide. Coatings 2020, 10, 410. https://doi.org/10.3390/coatings10040410
Nishi K, Oku T, Kishimoto T, Ueoka N, Suzuki A. Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium Iodide. Coatings. 2020; 10(4):410. https://doi.org/10.3390/coatings10040410
Chicago/Turabian StyleNishi, Kousuke, Takeo Oku, Taku Kishimoto, Naoki Ueoka, and Atsushi Suzuki. 2020. "Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium Iodide" Coatings 10, no. 4: 410. https://doi.org/10.3390/coatings10040410