Polarization Controlled Dual Functional Reflective Planar Metalens in Near Infrared Regime
Abstract
1. Introduction
2. Design and Simulation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and Negative Refractive Index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, J.; Wang, B.; Koschny, T.; Kafesaki, M.; Soukoulis, C.M. Negative refractive index due to chirality. Phys. Rev. B 2009, 79, 121104. [Google Scholar] [CrossRef]
- Ding, J.; Arigong, B.; Ren, H.; Zhou, M.; Shao, J.; Lin, Y.K.; Zhang, H.L. Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas. Opt. Express 2014, 22, 29143–29151. [Google Scholar] [CrossRef]
- Xu, J.; Li, R.Q.; Qin, J.; Wang, S.Y.; Han, T.C. Ultra-broadband linear polarization converter based on anisotropic metasurface. Opt. Express 2018, 26, 26235–26241. [Google Scholar] [CrossRef]
- Jing, X.F.; Gui, X.C.; Zhou, P.W.; Hong, Z. Physical Explanation of Fabry–Perot Cavity for Broadband Bilayer Metamaterials Polarization Converter. J. Lightwave Technol. 2018, 36, 2322–2327. [Google Scholar] [CrossRef]
- Peng, Y.; Zang, X.; Zhu, Y.; Shi, C.; Chen, L.; Cai, B.; Zhuang, S. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Opt. Express 2015, 23, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Ling, F.; Yue, J.; Luo, C.; Ji, J.; Yao, J. Dual-band tunable perfect metamaterial absorber in the THz range. Opt. Express 2016, 24, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Dong, Z.; Si, J.; Deng, X. Tunable polarization-independent coherent perfect absorber based on a metal-graphene nanostructure. Opt. Express 2017, 25, 32467–32474. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Z.; Li, R.; Zhang, J.; Li, Y.; Liu, Y.; Wang, X.; Qu, S. Plasmonics metalens independent from the incident polarizations. Opt. Express 2015, 23, 16782–16791. [Google Scholar] [CrossRef]
- Ding, P.; Li, Y.; Shao, L.; Tian, X.; Wang, J.; Fan, C. Graphene aperture-based metalens for dynamic focusing of terahertz waves. Opt. Express 2018, 26, 28038–28050. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, K.; Wang, C.; Juan, T.; Chen, W.; Liao, C.; He, Q.; Kung, W.; Guo, G.; Zhou, L.; et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef]
- Luo, L.; Wang, K.; Guo, K.; Shen, F.; Zhang, X.; Yin, Z.; Guo, Z. Tunable manipulation of terahertz wavefront based on graphene nmetasurfaces. J. Opt. 2017, 19, 115104. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Liao, T.; Cui, X. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Opt. Commun. 2018, 411, 93–100. [Google Scholar] [CrossRef]
- Zhu, Y.; Yuan, W.; Li, W.; Sun, H.; Qi, K.; Yu, Y. TE-polarized design for metallic slit lenses: A way to deep-subwavelength focusing over a broad wavelength range. Opt. Lett. 2018, 43, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Z.; Ge, C.; Wang, W.; Li, R.; Sun, Y.; Shen, F.; Qu, S.; Gao, J. Plasmonic focusing lens based on single-turn nano-pinholes array. Opt. Express 2015, 23, 17883–17891. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Lan, T.; Liu, P.; Li, Z. Polarization-insensitive, high numerical aperture metalens with nanoholes and surface corrugations. Opt. Commun. 2018, 429, 100–105. [Google Scholar] [CrossRef]
- Li, Z.; Yao, K.; Xia, F.; Shen, S.; Tian, J.; Liu, Y. Graphene Plasmonic Metasurfaces to Steer Infrared Light. Sci. Rep. 2015, 5, 12423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Z.; Su, F.; Ren, G.; Liu, F.; Yao, J. Terahertz wavefront manipulating by double-layer graphene ribbons metasurface. Opt. Commun. 2017, 402, 523–526. [Google Scholar] [CrossRef]
- Ma, W.; Huang, Z.; Bai, X.; Zhang, P.; Liu, Y. Dual-band light focusing using stacked graphene metasurfaces. ACS Photonics 2017, 4, 1770–1775. [Google Scholar] [CrossRef]
- Yao, W.; Tang, L.; Wang, J.; Ji, C.; Wei, X.; Jiang, Y. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, Q.; Wang, K.; Guo, K.; Shen, F.; Zhou, H.; Sun, Y.; Zhou, Q.; Gao, J.; Luo, L.; et al. Tunable dual-band terahertz metalens based on stacked graphene metasurfaces. Opt. Commun. 2018, 429, 41–45. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Z.; Zhou, K.; Sun, Y.; Shen, F.; Li, Y.; Qu, S.; Liu, S. Polarization-independent longitudinal multi-focusing metalens. Opt. Express 2015, 23, 29855–29866. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Chen, K.; Ni, Y.; Hua, Y.; Long, K.; Zhuang, S. Dual-Focuses Metalens for Copolarized and Cross-Polarized Transmission Waves. Adv. Condens. Matter Phys. 2018, 2018, 2312694. [Google Scholar] [CrossRef]
- Bao, Y.; Jiang, Q.; Kang, Y.; Zhu, X.; Fang, Z. Enhanced optical performance of multifocal metalens with conic shapes. Light Sci. Appl. 2017, 6, e17071. [Google Scholar] [CrossRef]
- Bao, Y.; Zu, S.; Liu, W.; Zhou, L.; Zhu, X.; Fang, Z. Revealing the spin optics in conic-shaped metasurfaces. Phys. Rev. B 2017, 95, 081406(R). [Google Scholar] [CrossRef]
- Fan, Q.; Wang, Y.; Liu, M.; Xu, T. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Opt. Lett. 2018, 43, 6005–6008. [Google Scholar] [CrossRef]
- Jiang, Q.; Bao, Y.; Lin, F.; Zhu, X.; Zhang, S.; Fang, Z. Spin-Controlled Integrated Near- and Far-Field Optical Launcher. Adv. Opt. Mater. 2018, 28, 1705503. [Google Scholar] [CrossRef]
- Shao, L.; Premaratne, M.; Zhu, W. Dual-functional coding metasurfaces made of mnisotropic all-dielectric resonators. IEEE Access 2019, 7, 45716–45722. [Google Scholar] [CrossRef]
- Liu, S. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 2016, 5, e16076. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Zhou, J.; Liu, Z.; Fu, Y. Switchable polarization selective terahertz wavefront manipulation in a graphene metasurface. IEEE Photonics J. 2019, 11, 4600909. [Google Scholar] [CrossRef]
- Ramezani, S.A.; Arik, K.; Farajollahi, S.; Khavasi, A.; Kavehvash, Z. Beam manipulating by gate-tunable graphene-based metasurfaces. Opt. Lett. 2015, 40, 5383–5386. [Google Scholar]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation withPhase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, B.; Liu, Z.; Fu, Y. Polarization Controlled Dual Functional Reflective Planar Metalens in Near Infrared Regime. Coatings 2020, 10, 389. https://doi.org/10.3390/coatings10040389
Zhang Y, Yang B, Liu Z, Fu Y. Polarization Controlled Dual Functional Reflective Planar Metalens in Near Infrared Regime. Coatings. 2020; 10(4):389. https://doi.org/10.3390/coatings10040389
Chicago/Turabian StyleZhang, Yuhui, Bowei Yang, Zhiying Liu, and Yuegang Fu. 2020. "Polarization Controlled Dual Functional Reflective Planar Metalens in Near Infrared Regime" Coatings 10, no. 4: 389. https://doi.org/10.3390/coatings10040389
APA StyleZhang, Y., Yang, B., Liu, Z., & Fu, Y. (2020). Polarization Controlled Dual Functional Reflective Planar Metalens in Near Infrared Regime. Coatings, 10(4), 389. https://doi.org/10.3390/coatings10040389