Investigation on Stranski–Krastanow (SK) Growth Mode of Ag Coating in Cu/Ag Core-Shell Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Copper Particles
2.2. Synthesis of Cu/Ag Core-Shell Composites
2.3. Characterization of Specimen
2.4. Method of Calculation
3. Results
3.1. Characterization of Specimens
3.2. Geometric Optimization
3.3. Population Analysis of Interface
3.4. Electronic Structure Analysis of Interface
3.5. Force Analysis of Interface
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagahama, C.; Zinchenko, A. Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity. Colloid Polym. Sci. 2019, 297, 363–369. [Google Scholar] [CrossRef]
- Zhu, B.; Li, K.; Feng, Y.; Zhang, S.; Wu, S.; Huang, W. Synthesis and catalytic performance of gold-loaded TiO2 nanofibers. Catal. Lett. 2007, 118, 55–58. [Google Scholar] [CrossRef]
- Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21, 12229–12234. [Google Scholar] [CrossRef] [PubMed]
- Hillier, A.C.; Grasa, G.A.; Viciu, M.S.; Lee, H.M.; Yang, C.l.; Nolan, S.P. Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems. J. Organomet. Chem. 2002, 653, 69–82. [Google Scholar] [CrossRef]
- Xie, W.; West, D.J.; Sun, Y.; Zhang, S. Role of nano in catalysis: Palladium catalyzed hydrogen desorption from nanosized magnesium hydride. Nano Energy 2013, 2, 742–748. [Google Scholar] [CrossRef]
- Choudary, B.M.; Madhi, S.; Chowdari, N.S.; Kantam, M.L.; Sreedhar, B. Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes. J. Am. Chem. Soc. 2002, 124, 14127–14136. [Google Scholar] [CrossRef]
- Hickman, A.J.; Sanford, M.S. High-valent organometallic copper and palladium in catalysis. Nature 2012, 484, 177–185. [Google Scholar] [CrossRef]
- Tegoua, A.; Papadimitrioua, S.; Pavlidoub, E.; Kokkinidisa, G.; Sotiropoulosa, S. Oxygen reduction at platinum- and gold-coated copper deposits on glassy carbon substrates. J. Electroanal. Chem. 2007, 608, 66–77. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, C.; Chen, K.; Popuri, S.R.; Lee, C. Study on synthesis of ultrafine Cu–Ag core–shell powders with high electrical conductivity. Appl. Surf. Sci. 2012, 263, 38–44. [Google Scholar] [CrossRef]
- Meng, Z.H.; Xie, K.N.; Liao, L.; Li, Y.J. Preparation and characterization of Ag-Cu coated powder. J. Funct. Materials 2013, 11, 1656–1662. [Google Scholar]
- Nian, P.; Li, Y.; Zhang, X.; Cao, Y.; Liu, H.; Zhang, X. ZnO Nanorod-induced heteroepitaxial growth of SOD type Co-based zeolitic imidazolate framework membranes for H2, separation. ACS Appl. Mater. Inter. 2018, 10, 4151–4160. [Google Scholar] [CrossRef]
- Shi, Z.; Li, H.; Yuan, Q. Van der waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure. Adv. Mater. 2018, 31, 1806130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, W.; Hsu, C.; Lee, J.; Fan, H.; Liao, C. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core–shell nanowires. Nanoscale. 2018, 10, 9862–9866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, K.H.; Arantes, J.T.; Chelikowsky, J.R.; Dalpian, G.M. First-principles calculations of lattice-strained core-shell nanocrystals. Phys. Rev. B. 2011, 84, 075311. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Wang, J. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations. Appl. Surf. Sci. 2016, 389, 316–323. [Google Scholar] [CrossRef]
- Lee, T.K.; Chiang, C.S.; Lee, W.H. A study on Cu particles coated with nano-silver by a replacement reaction between silver nitrate and copper particles. J. Nanosci. Nanotechnol. 2017, 17, 4157–4161. [Google Scholar] [CrossRef]
- Kim, J.J.; Lee, H.W.; Dabhade, V.V.; Kim, S.R.; Kwon, W.T.; Choi, D.J.; Kim, H.; Kim, Y. Electro magnetic interference shielding characteristic of silver coated copper powder. Met. Mater. Int. 2010, 16, 469–475. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Shchukin, V.A.; Grundmann, M.; Kirstaedter, N.; Böhrer, J.; Schmidt, O.; Bimberg, D.; Ustinov, V.M.; Egorov, A.Y.; Zhukov, A.E.; et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys. Rev. B 1996, 54, 8743. [Google Scholar] [CrossRef]
- Zhao, X.; Zhuo, Y.; Liu, S.; Zhou, Y.; Zhao, C.; Wang, C.; Yang, Q. Investigation on WC/TiC interface relationship in wear-resistant coating by first-principles. Surf. Coat. Technol. 2016, 305, 200–207. [Google Scholar] [CrossRef]
- Yang, D.; Liu, H.; Liu, L.; Sarina, S.; Zheng, Z.; Zhu, H. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: Promising candidates for entrapment of radioactive iodine anions. Nanoscale 2013, 5, 11011–11018. [Google Scholar] [CrossRef]
- Antanobich, A.; Achtstein, A.; Matsukovich, A.; Prudnikau, A.; Bhaskar, P.; Gurin, V.; Molinari, M.; Artemyev, M. Strain-induced exciton transition energy shift in CdSe nanoplatelets: The impact of the organic ligand shell. Nanoscale 2017, 9, 18042–18053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attard, G.A. A phenomenological theory of electrosorption. Electroanal. Chem. 2018, 819, 481–494. [Google Scholar] [CrossRef]
- Kellerman, D.; Medvedeva, N.; Mukhina, N.; Semenova, A.; Baklanova, I.; Perelyaeva, L.; Gorshkov, V. Vanadium doping of LiMnPO4: Vibrational spectroscopy and first-principle studies. Chem. Phys. Lett. 2014, 591, 21–24. [Google Scholar] [CrossRef]
- Xiong, Y.; Ma, Y.; Li, J.; Huang, J.; Yan, Y.; Zhang, H.; Wu, J.; Yang, D. Stran-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation. Nanoscale 2017, 9, 11077–11084. [Google Scholar] [CrossRef]
Species | Surface | Eslab (eV) | Ebulk (eV) | n | A (Å2) | Esur (eV) | Esur (J/m2) |
---|---|---|---|---|---|---|---|
Cu | (111) | −7381.8278 | −1472.4135 | 5 | 5.6585 | −1.7461 | −27.9370 |
(110) | −14,763.6947 | −1472.4135 | 10 | 9.2406 | −2.1405 | −34.2485 | |
(100) | −14,764.3335 | −1472.4135 | 10 | 6.5341 | −3.0761 | −49.2168 | |
Ag | (111) | −5136.5884 | −1024.6651 | 5 | 7.2298 | −0.9172 | −14.6758 |
(110) | −10,273.4678 | −1024.6651 | 10 | 11.8066 | −1.1357 | −18.1707 | |
(100) | −10,273.9832 | −1024.6651 | 10 | 8.3485 | −1.6370 | −26.1912 |
Interface | γint/eV·Å2 | A/Å2 | Bond Length/Å |
---|---|---|---|
Ag(111)/Cu(111) | 0.2452 | 6.9218 | 2.9372 |
Ag(110)/Cu(110) | 0.4996 | 9.1618 | 2.6709 |
Ag(100)/Cu(100) | 0.5425 | 8.1644 | 2.6459 |
Interface | σCu/eV·Å2 | Relationship | σAg/eV·Å2 |
---|---|---|---|
Ag(111)/Cu(111) | 1.7461 | > | 0.9172 |
Ag(110)/Cu(110) | 2.1405 | > | 1.1357 |
Ag(100)/Cu(100) | 3.0761 | > | 1.6370 |
Surface | nCu/nAg | A (Å2) | Esur (eV) | |
---|---|---|---|---|
Cu slab | (111) | 5/0 | 5.6585 | 1.7461 |
(110) | 10/0 | 9.2406 | 2.1405 | |
(100) | 10/0 | 6.5341 | 3.0761 | |
Cu/Ag slab | Ag(111)/Cu(111) | 5/5 | 7.7039 | 0.0006 |
Ag(110)/Cu(110) | 10/10 | 9.1618 | 0.0880 | |
Ag(100)/Cu(100) | 10/10 | 8.1644 | 1.5601 |
Species | Ag(111)/Cu(111) | Ag(110)/Cu(110) | Ag(100)/Cu(100) | |||
---|---|---|---|---|---|---|
Population | Charge(e) | Population | Charge(e) | Population | Charge(e) | |
Cu | 11.00 | 0.04/−0.08 | 11.01 | 0.03/−0.11 | 11.01 | 0.02/−0.09 |
Ag | 10.99 | 0.04/−0.05 | 10.99 | 0.02/−0.03 | 10.99 | 0.03/−0.02 |
Cu-Cu | 0.61/−0.64 | – | 0.54/−0.20 | – | 0.72 | – |
Ag-Ag | −0.43 | – | 0.62/−0.09 | – | 0.47/−0.19 | – |
Ag-Cu | 0.32 | – | 0.68 | – | 0.62 | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Wang, Y.; Lu, J.; Ning, Z.; Li, J. Investigation on Stranski–Krastanow (SK) Growth Mode of Ag Coating in Cu/Ag Core-Shell Composites. Coatings 2020, 10, 297. https://doi.org/10.3390/coatings10030297
Wan X, Wang Y, Lu J, Ning Z, Li J. Investigation on Stranski–Krastanow (SK) Growth Mode of Ag Coating in Cu/Ag Core-Shell Composites. Coatings. 2020; 10(3):297. https://doi.org/10.3390/coatings10030297
Chicago/Turabian StyleWan, Xingyuan, Yiyong Wang, Jinlin Lu, Zhe Ning, and Jidong Li. 2020. "Investigation on Stranski–Krastanow (SK) Growth Mode of Ag Coating in Cu/Ag Core-Shell Composites" Coatings 10, no. 3: 297. https://doi.org/10.3390/coatings10030297
APA StyleWan, X., Wang, Y., Lu, J., Ning, Z., & Li, J. (2020). Investigation on Stranski–Krastanow (SK) Growth Mode of Ag Coating in Cu/Ag Core-Shell Composites. Coatings, 10(3), 297. https://doi.org/10.3390/coatings10030297