Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone Composite with Biological and Electrical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outline of Experimental Procedure
2.2. Materials Fabrication
2.2.1. Substrate and Pre-Treatment
2.2.2. Sulfuric Acid Treatment
2.2.3. Oxygen Plasma Treatment
2.2.4. ‘Alkaline SBF’ Treatment
2.2.5. Analyses
2.3. Evaluation of Materials Properties
2.3.1. Evaluation of Apatite-Forming Ability
2.3.2. Impedance Measurement
3. Results and Discussion
3.1. Material Analyses
3.1.1. Changes in Surface Morphology during the Fabrication Process
3.1.2. Changes in Functional Groups during the Fabrication Process
3.1.3. Hydrophilicity
3.2. Evaluation of Material Properties
3.2.1. Apatite-Forming Ability
3.2.2. Impedance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kurtz, S.M. An Overview of PEEK Biomaterials. In PEEK Biomaterials Handbook, 2nd ed.; Kurtz, S.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–9. [Google Scholar]
- Kizuki, T.; Matsushita, T.; Kokubo, T. Apatite-forming PEEK with TiO2 surface layer coating. J. Mater. Sci.-Mater. Med. 2015, 26, 5359. [Google Scholar] [CrossRef]
- Shimizu, T.; Fujibayashi, S.; Yamaguchi, S.; Yamamoto, K.; Otsuki, B.; Takemoto, M.; Tsukanaka, M.; Kizuki, T.; Matsuhita, T.; Kokubo, T.; et al. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies. Acta Biomater. 2016, 35, 305–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wong, H.M.; Li, P.; Xu, Z.; Chong, E.Y.W.; Yan, C.H.; Yeung, K.W.K.; Chu, P.K. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 2013, 34, 9264–9277. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Matsunami, C.; Shirosaki, Y. Bioactive carbon–PEEK composites prepared by chemical surface treatment. Mater. Sci. Eng. C 2017, 70, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Takadama, H.; Kokubo, T. In vitro evaluation of bone bioactivity. In Bioceramics and Their Clinical Applications; Kokubo, T., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 165–182. [Google Scholar]
- Implants for Surgery—In Vitro Evaluation for Apatite-Forming Ability of Implant Materials; ISO 23317; International Organization for Standardization: Geneva, Switzerland, 2014.
- Yao, T.; Hibino, M.; Yamaguchi, S.; Okada, H. Method for Stabilizing Calcium Phosphate Fine Particles, Process for Production of Calcium Phosphate Fine Particles by Utilizing the Method, and Use Thereof. U.S. Patent 8178066, 15 May 2012. Japanese Patent 5261712, 10 May 2013. [Google Scholar]
- Yao, T.; Yabutsuka, T. Material Having Pores on Surface, and Method for Manufacturing Same. Japanese Patent 6071895, 13 January 2017. [Google Scholar]
- Yabutsuka, T.; Fukushima, K.; Hiruta, T.; Takai, S.; Yao, T. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite. Mater. Sci. Eng. C 2017, 81, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Yabutsuka, T.; Fukushima, K.; Hiruta, T.; Takai, S.; Yao, T. Fabrication of bioactive fiber-reinforced PEEK and MXD6 by incorporation of precursor of apatite. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Masamoto, K.; Fujibayashi, S.; Yabutsuka, T.; Hiruta, T.; Otsuki, B.; Okuzu, Y.; Goto, K.; Shimizu, T.; Shimizu, Y.; Ishizaki, C.; et al. In vivo and in vitro bioactivity of a “precursor of apatite” treatment on polyetheretherketone. Acta Biomater. 2019, 91, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Lacefield, W.R. Hydroxyapatite coatings. In An Introduction to Bioceramics, 2nd ed.; Imperial College Press: London, UK, 2013; pp. 331–347. [Google Scholar]
- Kim, H.-M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Bonding strength of bonelike apatite layer to Ti metal substrate. J. Biomed. Mater. Res. 1997, 38, 121–127. [Google Scholar] [CrossRef]
- Miyazaki, T.; Kim, H.-M.; Kokubo, T.; Ohtsuki, C.; Kato, H.; Nakamura, T. Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal. J. Mater. Sci. Mater. Med. 2002, 13, 651–655. [Google Scholar] [CrossRef]
- Juhasz, J.A.; Best, S.M.; Kawashita, M.; Miyata, N.; Kokubo, T.; Nakamura, T.; Bonfield, W. Bonding strength of the apatite layer formed on glass-ceramic apatite-wollastonite-polyethylene composites. J. Biomed. Mater. Res. A 2003, 67, 952–959. [Google Scholar] [CrossRef]
- Solomons, T.W.G.; Fryhle, C.B. Reactions of Aromatic Compounds. In Organic Chemistry, 7th ed.; Wiley: New York, NY, USA, 2000; pp. 661–713. [Google Scholar]
- Kawashita, M.; Hayashi, J.; Li, Z.; Miyazaki, T.; Hashimoto, M.; Hihara, H.; Kanetaka, H. Adsorption characteristics of bovine serum albumin onto alumina with a specific crystalline structure. J. Mater. Sci. Mater. Med. 2014, 25, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Elemental Composition/at% | ||
---|---|---|---|
1 Day | 4 Days | 7 Days | |
C | 61.623 | 40.386 | 21.384 |
O | 32.300 | 40.683 | 43.106 |
Ca | 2.730 | 11.586 | 21.458 |
P | 2.181 | 6.621 | 11.429 |
Na | 0.662 | 0.452 | 1.213 |
Mg | 0.172 | 0.017 | 0.177 |
Cl | 0.164 | 0.231 | 0.517 |
K | 0.001 | 0.001 | 0.715 |
Al | 0.166 | 0.002 | 0.002 |
Si | 0.001 | 0.020 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishizaki, C.; Yabutsuka, T.; Takai, S. Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone Composite with Biological and Electrical Properties. Coatings 2020, 10, 191. https://doi.org/10.3390/coatings10020191
Ishizaki C, Yabutsuka T, Takai S. Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone Composite with Biological and Electrical Properties. Coatings. 2020; 10(2):191. https://doi.org/10.3390/coatings10020191
Chicago/Turabian StyleIshizaki, Chihiro, Takeshi Yabutsuka, and Shigeomi Takai. 2020. "Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone Composite with Biological and Electrical Properties" Coatings 10, no. 2: 191. https://doi.org/10.3390/coatings10020191