Study of TiO2-Modified Sol Coating Material in the Protection of Stone-Built Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TSCM
2.3. Coating Method
2.4. Characterization of Stone Samples
2.5. Protective Performance of TSCM
2.5.1. Test of Stone Appearance
2.5.2. Test of Water Absorption
2.5.3. Test of Water Vapor Permeability
2.5.4. Test of Acid Resistance
2.5.5. Test of Weather Resistance
3. Results and Discussion
3.1. Effect of Layer Numbers and Amount of TiO2 Nanoparticles on Appearance
3.2. X-ray Diffractometer Analysis
3.3. Scanning Electron Microscopic Analysis
3.4. Water Absorption
3.5. Water Vapor Permeability
3.6. Acid Resistance
3.7. Weather Resistance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graziani, G.; Sassoni, E.; Franzoni, E.; Scherer, G.W. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance. Appl. Surf. Sci. 2016, 368, 241–257. [Google Scholar] [CrossRef]
- Graziani, G.; Sassoni, E.; Scherer, G.W.; Franzoni, E. Resistance to simulated rain of hydroxyapatite- and calcium oxalate-based coatings for protection of marble against corrosion. Corros. Sci. 2017, 127, 168–174. [Google Scholar] [CrossRef]
- Truppi, A.; Luna, M.; Petronella, F.; Falcicchio, A.; Giannini, C.; Comparelli, R.; Mosquera, M. Photocatalytic activity of TiO2/AuNRs–SiO2 nanocomposites applied to building materials. Coatings 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Diao, X.; Zhang, J.; Kang, P. Corrosion resistance of waterborne epoxy coatings by incorporation of dopamine treated mesoporous-TiO2 particles. Coatings 2018, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Study on the weathering mechanism and protection technology of stone archives. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 062032. [Google Scholar] [CrossRef]
- Ferrari, A.; Pini, M.; Neri, P.; Bondioli, F. Nano-TiO2 coatings for limestone: Which sustainability for cultural heritage? Coatings 2015, 5, 232–245. [Google Scholar] [CrossRef]
- Liu, X.; Meng, H.; Wang, Y.; Katayama, Y.; Gu, J.-D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeter. Biodegr. 2018, 133, 9–16. [Google Scholar] [CrossRef]
- Pal, S.; Contaldi, V.; Licciulli, A.; Marzo, F. Self-cleaning mineral paint for application in architectural heritage. Coatings 2016, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Frigione, M.; Lettieri, M. Novel attribute of organic–inorganic hybrid coatings for protection and preservation of materials (stone and wood) belonging to cultural heritage. Coatings 2018, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wen, W.; Yu, H.; Qiu, F.; Chen, Q.; Yang, D. Preparation, characterization of nano-silica/fluoroacrylate material and the application in stone surface conservation. J. Polym. Res. 2016, 23, 965–977. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, B.; Shen, Z.; Lu, H. A crude protective film on historic stones and its artificial preparation through biomimetic synthesis. Appl. Surf. Sci. 2006, 253, 2625–2632. [Google Scholar] [CrossRef]
- Melo, M.; Bracci, S.; Camaiti, M.; Chiantore, O.; Piacenti, F. Photodegradation of acrylic resins used in the conservation of stone. Polym. Degrad. Stabil. 1999, 66, 23–30. [Google Scholar] [CrossRef]
- Benedetti, E.; D’Alessio, A.; Zini, M.F.; Bramanti, E.; Tirelli, N.; Vergamini, P.; Moggi, G. Characterization of acrylic resins and fluoroelastomer blends as potential materials in stone protection. Polym. Int. 2000, 49, 888–892. [Google Scholar] [CrossRef]
- Watté, J.; Van Zele, M.; De Buysser, K.; Van Driessche, I. Recent advances in low-temperature deposition methods of transparent, photocatalytic TiO2 coatings on polymers. Coatings 2018, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Tesser, E.; Lazzarini, L.; Bracci, S. Investigation on the chemical structure and ageing transformations of the cycloaliphatic epoxy resin EP2101 used as stone consolidant. J. Cult. Herit. 2018, 31, 72–82. [Google Scholar] [CrossRef]
- Xu, F.; Zeng, W.; Li, D. Recent advance in alkoxysilane-based consolidants for stone. Prog. Org. Coat. 2019, 127, 45–54. [Google Scholar] [CrossRef]
- Price, C.; Ross, K.; White, G. A further appraisal of the ‘lime technique’ for limestone consolidation, using a radioactive tracer. Stud. Conserv. 1988, 33, 178–186. [Google Scholar]
- Karatasios, I.; Katsiotis, M.S.; Likodimos, V.; Kontos, A.I.; Papavassiliou, G.; Falaras, P.; Kilikoglou, V. Photo-induced carbonation of lime-TiO2 mortars. Appl. Catal. B-Environ. 2010, 95, 78–86. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photoch. Photobio. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Lv, T.; Zhao, J.; Chen, M.; Shen, K.; Zhang, D.; Zhang, J.; Zhang, G.; Liu, Q. Boosted visible-light photodegradation of methylene blue by V and Co co-doped TiO2. Materials 2018, 11, 1946. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, Q.; Zhu, Z.; Zhang, J.; Zhang, B. Application of TiO2 photocatalyst to the stone conservation. Mater. Res. Innov. 2015, 19, 51–54. [Google Scholar] [CrossRef]
- Quagliarini, E.; Bondioli, F.; Goffredo, G.B.; Cordoni, C.; Munafò, P. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr. Build. Mater. 2012, 37, 51–57. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Rovella, N.; Belfiore, C.M.; Palermo, A.M.; Guzzi, M.T.; Crisci, G.M. Multifunctional TiO2 coatings for cultural heritage. Prog. Org. Coat. 2012, 74, 186–191. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Ur Rehman, Z. Review of recent advances in polylactic Acid/TiO2 composites. Materials 2019, 12, 3659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, K.V.S.; Subrahmanyam, M.; Boule, P. Immobilized TiO2 photocatalyst during long-term use: Decrease of its activity. Appl. Catal. B-Environ. 2004, 49, 239–249. [Google Scholar] [CrossRef]
- Windler, L.; Lorenz, C.; von Goetz, N.; Hungerbuhler, K.; Amberg, M.; Heuberger, M.; Nowack, B. Release of titanium dioxide from textiles during washing. Environ. Sci. Technol. 2012, 46, 8181–8188. [Google Scholar] [CrossRef]
- Bautista-Gutierrez, K.P.; Herrera-May, A.L.; Santamaria-Lopez, J.M.; Honorato-Moreno, A.; Zamora-Castro, S.A. Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges. Materials 2019, 12, 3548. [Google Scholar] [CrossRef] [Green Version]
- Pinho, L.; Mosquera, M.J. Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: Influence of particle size and loading. Appl. Catal. B-Environ. 2013, 134–135, 205–221. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, B.-J. Syntheses of a novel nanomaterial for conservation of historic stones inspired by nature. Mater. Lett. 2007, 61, 4976–4979. [Google Scholar] [CrossRef]
- JC/T973-2005 Natural Stone Protector for Building Decoration; National Development and Reform Commission of PRC: Beijing, China, 2005.
- Berns, R.S.; Reiman, D.M. Color managing the third edition of Billmeyer and Saltzman’s Principles of Color Technology. Color. Res. Appl. 2002, 27, 360–373. [Google Scholar] [CrossRef]
- Petronella, F.; Pagliarulo, A.; Truppi, A.; Lettieri, M.; Masieri, M.; Calia, A.; Curri, M.L.; Comparelli, R. TiO2 nanocrystal based coatings for the protection of architectural stone: The effect of solvents in the spray-coating application for a self-cleaning surfaces. Coatings 2018, 8, 356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, Q.; Liu, T.; Zhang, B. The preservation damage of hydrophobic polymer coating materials in conservation of stone relics. Prog. Org. Coat. 2013, 76, 1127–1134. [Google Scholar] [CrossRef]
- Quagliarini, E.; Bondioli, F.; Goffredo, G.B.; Licciulli, A.; Munafò, P. Smart surfaces for architectural heritage: Preliminary results about the application of TiO2-based coatings on travertine. J. Cult. Herit. 2012, 13, 204–209. [Google Scholar] [CrossRef]
- Munafò, P.; Quagliarini, E.; Goffredo, G.B.; Bondioli, F.; Licciulli, A. Durability of nano-engineered TiO2 self-cleaning treatments on limestone. Constr. Build. Mater. 2014, 65, 218–231. [Google Scholar] [CrossRef]
- Miliani, C.; Velo-Simpson, M.L.; Scherer, G.W. Particle-modified consolidants: A study on the effect of particles on sol–gel properties and consolidation effectiveness. J. Cult. Herit. 2007, 8, 1–6. [Google Scholar] [CrossRef]
- Hou, P.; Gao, F.; Gao, Y.; Yang, Y.; Cai, C. Changes in breakdown pressure and fracture morphology of sandstone induced by nitrogen gas fracturing with different pore pressure distributions. Int. J. Rock. Mech. Min. 2018, 109, 84–90. [Google Scholar] [CrossRef]
- Tokarský, J.; Martinec, P.; Mamulová Kutláková, K.; Ovčačíková, H.; Študentová, S.; Ščučka, J. Photoactive and hydrophobic nano-ZnO/poly(alkyl siloxane) coating for the protection of sandstone. Constr. Build. Mater. 2019, 199, 549–559. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M. Performances and coating morphology of a siloxane-based hydrophobic product applied in different concentrations on a highly porous stone. Coatings 2016, 6, 60. [Google Scholar] [CrossRef]
- Peruzzi, R.; Poli, T.; Toniolo, L. The experimental test for the evaluation of protective treatments: A critical survey of the “capillary absorption index”. J. Cult. Herit. 2003, 4, 251–254. [Google Scholar] [CrossRef]
- Pia, G.; Esposito Corcione, C.; Striani, R.; Casnedi, L.; Sanna, U. Coating’s influence on water vapour permeability of porous stones typically used in cultural heritage of Mediterranean area: Experimental tests and model controlling procedure. Prog. Org. Coat. 2017, 102, 239–246. [Google Scholar] [CrossRef]
Sample Number | Stone Type | Coatings |
---|---|---|
1# | Sandstone | Untreated |
2# | Treated with p-sol | |
3# | Treated with TSCM | |
4# | Marble | Untreated |
5# | Treated with p-sol | |
6# | Treated with TSCM |
TiO2 Nanoparticles Addition/100 mL | Layer Numbers | ΔE* | TiO2 Nanoparticles Addition/100 mL | Layer Numbers | ΔE* | TiO2 Nanoparticles Addition/100mL | Layer Numbers | ΔE* |
---|---|---|---|---|---|---|---|---|
1 g/100 mL | 1 | 3.17 | 0.05 g/100 mL | 1 | 1.12 | 0.005 g/100 mL | 1 | 0.95 |
2 | 5.87 | 2 | 2.46 | 2 | 1.21 | |||
3 | 8.98 | 3 | 3.70 | 3 | 2.03 | |||
4 | 11.31 | 4 | 4.13 | 4 | 3.52 | |||
5 | 13.46 | 5 | 4.98 | 5 | 4.00 | |||
0.5 g/100 mL | 1 | 3.01 | 0.03 g/100 mL | 1 | 0.98 | |||
2 | 4.18 | 2 | 1.11 | |||||
3 | 6.59 | 3 | 2.61 | |||||
4 | 8.51 | 4 | 3.75 | |||||
5 | 11.09 | 5 | 4.53 | |||||
0.1 g/100 mL | 1 | 1.32 | 0.01 g/100mL | 1 | 1.00 | |||
2 | 3.00 | 2 | 1.71 | |||||
3 | 4.89 | 3 | 2.87 | |||||
4 | 6.43 | 4 | 3.55 | |||||
5 | 8.12 | 5 | 4.01 |
Stone | Type of Product Applied | Corrosion Cycle (Weather Resistance) | Acid Resistance pH | References |
---|---|---|---|---|
Sandstone | polymerized siloxane | 4 | – | [38] |
Marble | TiO2 pure-sol | – | 0.5–0.8 | [21] |
Marble | TSCM | – | –0.6 | Present work |
Sandstone | TSCM | 16 | <–0.6 | Present work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, H.; Yang, M.; Liu, Q.; Luo, M. Study of TiO2-Modified Sol Coating Material in the Protection of Stone-Built Cultural Heritage. Coatings 2020, 10, 179. https://doi.org/10.3390/coatings10020179
Shu H, Yang M, Liu Q, Luo M. Study of TiO2-Modified Sol Coating Material in the Protection of Stone-Built Cultural Heritage. Coatings. 2020; 10(2):179. https://doi.org/10.3390/coatings10020179
Chicago/Turabian StyleShu, Hui, Ming Yang, Qiang Liu, and Maobin Luo. 2020. "Study of TiO2-Modified Sol Coating Material in the Protection of Stone-Built Cultural Heritage" Coatings 10, no. 2: 179. https://doi.org/10.3390/coatings10020179
APA StyleShu, H., Yang, M., Liu, Q., & Luo, M. (2020). Study of TiO2-Modified Sol Coating Material in the Protection of Stone-Built Cultural Heritage. Coatings, 10(2), 179. https://doi.org/10.3390/coatings10020179