Effect of Vacuum Heat Treatment on the High-Temperature Oxidation Resistance of NiCrAlY Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Material
2.2. Sample Preparation
2.3. VHT
2.4. High-Temperature Oxidation Test
2.5. Sample Characterization
3. Results
3.1. Microstructure of As-Sprayed and VHT Coatings
3.2. Weighing Results
3.3. Microstructure of Coatings after Oxidation
3.4. XRD and EDS Analysis of Coatings
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saeidi, S.; Voisey, K.; McCartney, D.G.; McCartney, D. The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY Coatings. J. Therm. Spray Technol. 2009, 18, 209–216. [Google Scholar] [CrossRef]
- Tang, F.; Ajdelsztajn, L.; Schoenung, J.M. Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying. Scr. Mater. 2004, 51, 25–29. [Google Scholar] [CrossRef]
- Zhang, G.; Kanta, A.F.; Li, W.; Liao, H.; Coddet, C. Characterizations of AMT-200 HVOF NiCrAlY coatings. Mater. Des. 2009, 30, 622–627. [Google Scholar] [CrossRef]
- Naeimi, F.; Rahimipour, M.R.; Salehi, M. Effect of sandblasting process on the oxidation behavior of HVOF MCrAlY coatings. Oxid. Met. 2016, 86, 59–73. [Google Scholar] [CrossRef]
- Chen, H.; Si, Y.; McCartney, D.; McCartney, D. An analytical approach to the β-phase coarsening behaviour in a thermally sprayed CoNiCrAlY bond coat alloy. J. Alloys Compd. 2017, 704, 359–365. [Google Scholar] [CrossRef]
- Saeidi, S.; Voisey, K.; McCartney, D.G. Mechanical properties and microstructure of VPS and HVOF CoNiCrAlY coatings. J. Therm. Spray Technol. 2011, 20, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.M.; Yu, Y.G.; Ren, X.J.; Zhang, D.M.; Shen, J. Comparative study of the cyclic oxidation resistance of NiCrAlY and NiCoCrAlY coatings. Adv. Mater. Res. 2013, 1810–1813. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.; Li, C.; Zheng, Q.; Liu, Z.; Li, Y.; Jia, J. Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS. Int. J. Mater. Res. 2018, 109, 858–864. [Google Scholar] [CrossRef]
- Doolabi, D.S.; Rahimipour, M.R.; Alizadeh, M.; Pouladi, S.; Hadavi, S.M.M.; Vaezi, M. Effect of high vacuum heat treatment on microstructure and cyclic oxidation resistance of HVOF-CoNiCrAlY coatings. Vacuum 2017, 135, 22–33. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, Z.; Zhang, B.; Chu, Y.; Zhang, Y.; Fan, J. Effects of process parameters of vacuum pre-oxidation on the microstructural evolution of CoCrAlY coating deposited by HVOF. J. Alloys Compd. 2018, 735, 547–559. [Google Scholar] [CrossRef]
- Sloof, W.G.; Nijdam, T.J. On the high-temperature oxidation of MCrAlY coatings. Int. J. Mater. Res. 2009, 100, 1318–1330. [Google Scholar] [CrossRef]
- Levi, C.G.; Sommer, E.; Terry, S.G.; Catanoiu, A.; Rühle, M. Alumina grown during deposition of thermal barrier coatings on NiCrAlY. J. Am. Ceram. Soc. 2003, 86, 676–685. [Google Scholar] [CrossRef]
- An, T.F.; Guan, H.R.; Sun, X.F.; Hu, Z.Q. Effect of the θ–α-Al2O3 transformation in scales on the oxidation behavior of a nickel-base superalloy with an aluminide diffusion coating. Oxid. Met. 2000, 54, 301–316. [Google Scholar] [CrossRef]
- Grabke, H.J. Oxidation of NiAl and FeAl. Intermetallics 1999, 7, 1153–1158. [Google Scholar] [CrossRef]
- Pérez, E.S.; Gutierrez, H.M.; López, F.J. Corrosion of MCrAlY: Pt composites prepared by spark plasma sintering. Corros. Eng. Sci. Technol. 2018, 53, 539–548. [Google Scholar] [CrossRef]
- Zhou, S.; Xiong, Z.; Lei, J.; Dai, X.; Zhang, T.; Wang, C.; Shengfeng, Z. Influence of milling time on the microstructure evolution and oxidation behavior of NiCrAlY coatings by laser induction hybrid cladding. Corros. Sci. 2016, 103, 105–116. [Google Scholar] [CrossRef]
- Schulz, U.; Bernardi, O.; Ebach-Stahl, A.; Vassen, R.; Sebold, D. Improvement of EB-PVD thermal barrier coatings by treatments of a vacuum plasma-sprayed bond coat. Surf. Coat. Technol. 2008, 203, 160–170. [Google Scholar] [CrossRef]
- Zhu, C.; Javed, A.; Li, P.; Liang, G.; Xiao, P. Study of the effect of laser treatment on the initial oxidation behaviour of Al-coated NiCrAlY bond-coat. Surf. Interface Anal. 2013, 45, 1680–1689. [Google Scholar] [CrossRef]
- Schab, C.; Zimmermann, J.R.A.; Grasso, P.-D.; Stankowski, A.; Heinze, S.; Marquardt, A.; Leyens, C. Thermodynamic calculation and experimental analysis of critical phase transformations in HVOF-sprayed NiCrAlY-coating alloys. Surf. Coat. Technol. 2019, 357, 924–938. [Google Scholar] [CrossRef]
- Song, J.; Ma, K.; Li, Y.; Zhang, L.; Schoenung, J.M. High temperature microstructure and microhardness evolution in dense NiCrAlY bulk material fabricated by spark plasma sintering. Mater. Sci. Eng. A 2011, 528, 3210–3217. [Google Scholar] [CrossRef]
- Achar, D.; Munoz-Arroyo, R.; Singheiser, L.; Quadakkers, W.J. Modelling of phase equilibria in MCrAlY coating systems. Surf. Coat. Technol. 2004, 187, 272–283. [Google Scholar] [CrossRef]
- Zhao, L.R.; Lupandina, O.; Pankov, V.V.; McKellar, R.C. Microstructures of NiCrAlY coating applied on CMSX-4 by cathodic arc deposition. Struct. Dyn. 2014, 7, 1–8. [Google Scholar] [CrossRef]
- Li, B.; Ma, S.; Gao, Y.; Li, C.; Guo, H.; Zheng, Q.; Kang, Y.; Jia, J. Mechanical, tribological, and oxidation resistance properties of NiCrAlY coating by atmospheric plasma spraying. Front. Mater. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Khakzadian, J.; Hosseini, S.; Madar, K.Z. Cathodic arc deposition of NiCrAlY coating: Oxidation behaviour and thermodynamic. Surf. Eng. 2019, 35, 677–682. [Google Scholar] [CrossRef]
- Tolpygo, V.; Clarke, D. Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides. Mater. High Temp. 2000, 17, 59–70. [Google Scholar] [CrossRef]
- Yang, S.; Wang, F. Effect of microcrystallization on the oxidation behavior of β-NiAl at 1000 °C in air. Jinshu Xuebao/Acta Metall. Sin. 2000, 36, 511–516. [Google Scholar]
- Li, M.; Zhang, Z.; Sun, X.; Li, J.; Yin, F.; Hu, W.; Guan, H.; Hu, Z. Oxidation behavior of sputter-deposited NiCrAlY coating. Surf. Coat. Technol. 2003, 165, 241–247. [Google Scholar] [CrossRef]
- Zhu, C.; Li, P.; Wu, X. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process. Ceram. Int. 2016, 42, 7708–7716. [Google Scholar] [CrossRef]
- Bai, M.; Song, B.; Reddy, L.; Hussain, T. Preparation of MCrAlY–Al2O3 composite coatings with enhanced oxidation resistance through a novel powder manufacturing process. J. Therm. Spray Technol. 2019, 28, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Schoenung, J.M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO. Surf. Coat. Technol. 2011, 205, 5178–5185. [Google Scholar] [CrossRef]
Element | Ni | Cr | Al | Y |
---|---|---|---|---|
Content | 67 | 22 | 10 | 1 |
Parameters | Values |
---|---|
O2 | 10.3 bar, 240 L/min |
C3H8 | 6.2 bar, 58 L/min |
Air | 6.9 bar |
Spray distance | 230 mm |
Powder feeding rate | 35 g/min |
Coating | As-Sprayed | VHT1000 | VHT1100 | VHT1200 |
---|---|---|---|---|
porosity (%) | 9.4 | 0.4 | 0.2 | 0.2 |
Coating | As-Sprayed | VHT1000 | VHT1100 | VHT1200 |
---|---|---|---|---|
kp | 0.45 | 0.38 | 0.27 | 0.16 |
Coating | As-Sprayed | VHT1000 | VHT1100 | VHT1200 |
---|---|---|---|---|
Oxygen content | 4.28 | 4.04 | 3.50 | 1.93 |
Element | As-Sprayed | VHT1000 | VHT1100 | VHT1200 |
---|---|---|---|---|
O | 2.86 | 10.88 | 13.40 | 5.76 |
Al | 10.06 | 13.31 | 15.04 | 12.06 |
Cr | 22.22 | 31.08 | 26.61 | 18.43 |
Ni | 63.86 | 42.67 | 42.28 | 59.02 |
Y | 1.00 | 2.07 | 2.66 | 4.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Yang, D.; Gao, Y. Effect of Vacuum Heat Treatment on the High-Temperature Oxidation Resistance of NiCrAlY Coating. Coatings 2020, 10, 1089. https://doi.org/10.3390/coatings10111089
Zheng J, Yang D, Gao Y. Effect of Vacuum Heat Treatment on the High-Temperature Oxidation Resistance of NiCrAlY Coating. Coatings. 2020; 10(11):1089. https://doi.org/10.3390/coatings10111089
Chicago/Turabian StyleZheng, Jiahui, Deming Yang, and Yang Gao. 2020. "Effect of Vacuum Heat Treatment on the High-Temperature Oxidation Resistance of NiCrAlY Coating" Coatings 10, no. 11: 1089. https://doi.org/10.3390/coatings10111089
APA StyleZheng, J., Yang, D., & Gao, Y. (2020). Effect of Vacuum Heat Treatment on the High-Temperature Oxidation Resistance of NiCrAlY Coating. Coatings, 10(11), 1089. https://doi.org/10.3390/coatings10111089