Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001)
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of High Energy Crystal Surface TiO2
2.2. Preparation of Ag-TiO2
2.3. Evaluation of Photocatalytic Performance
2.4. Characterization
3. Results and Discussion
3.1. FESEM Analysis
3.2. TEM Analysis
3.3. XRD Analysis
3.4. BET Analysis
3.5. UV-Vis-Abs Analysis
3.6. XPS Analysis
3.7. Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yan, Q.; Huang, G.F.; Li, D.F.; Zhang, M.; Pari, A.L.; Huang, W.Q. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets. J. Mater. Sci. Technol. 2018, 34, 2515–2520. [Google Scholar] [CrossRef]
- Aris, M.; Agus, P. Removal efficiency of nitrite and sulfide pollutants by electrochemical process by using Ti/RuIrO2 anode. Indones. J. Chem. 2018, 18, 286–293. [Google Scholar]
- Trellu, C.; Oturan, N.; Pechaud, Y.; Hullebush, E.D.V.; Esposito, G.; Outran, M.A. Anodic oxidation of surfactants and organic compounds entrapped in micelles-selective degradation mechanisms and soil washing solution reuse. Water Res. 2017, 118, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Boltersdorf, J.; Sullivan, I.; Shelton, T.L.; Wu, Z.K.; Gray, M.; Zoellner, B.; Osterloh, F.E.; Maggard, P.A. Flux synthesis optical and photocatalytic properties of n-type Sn2TiO4: Hydrogen and oxygen evolution under visible light. Chem. Mater. 2016, 28, 8876–8889. [Google Scholar] [CrossRef]
- Hernandez-Alonso, M.D.; Fresno, F.; Suarez, S.; Coronado, M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2009, 2, 1231–1257. [Google Scholar] [CrossRef]
- Wang, T.; Costan, J.; Centeno, A.; Pang, J.S.; Darvill, D.; Ryan, M.P.; Xie, F. Broad and enhanced fluorescence using zinc-oxide nanoflower arrays. J. Mater. Chem. 2015, 3, 2656–2663. [Google Scholar]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.L. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpour, Z.; Alemi, A.; Khandar, A.A. A controlled solvothermal synthesis of cus hierarchical structures and their natural-light-induced photocatalytic properties. New J. Chem. 2015, 39, 5470–5476. [Google Scholar] [CrossRef]
- Qi, K.Z.; Liu, S.Y.; Qiu, M. Photocatalytic performance of TiO2 nanocrystal with/without oxygen defects. Chin. J. Catal. 2018, 39, 867–875. [Google Scholar] [CrossRef]
- Low, J.X.; Chen, B.; Yu, J.G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Wei, S.H.; Ni, S.; Xu, X.X. A new approach to inducing Ti3+ in anatase TiO2 for efficient photocatalytic hydrogen production. Chin. J. Catal. 2018, 39, 510–516. [Google Scholar] [CrossRef]
- Liu, F.; Feng, N.D.; Wang, Q. Transfer channel of photoinduced hole on TiO2 surface as revealed by solid-state nmr and esr spectroscopy. J. Am. Chem. Soc. 2017, 139, 10020–10028. [Google Scholar] [CrossRef]
- Moreau, M.M.L.; Granja, L.P.; Fuertes, M.C.; Martinez, E.D.; Ferrari, V.; Levy, P.E.; Soler-lllia, G.J.A.A. Three-dimensional electrochemical lithography in mesoporous TiO2 thin films. J. Phys. Chem. 2015, 119, 28954–28960. [Google Scholar] [CrossRef]
- Hoffman, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Li, F.L.; Cai, H.Q.; Chen, L.S. The study of antioxidation and reducing ability of polysaccharides from pogonatherum crinitum. J. Org. Chem. Res. 2015, 3, 16–24. [Google Scholar] [CrossRef]
- Saharudin, K.A.; Sreekantan, S.; Basiron, N.; Khor, Y.L.; Harun, N.H.; Mydin, R.B.S.M.N.; Adki, H.M.; Seeni, A.; Vignesh, K. Bacteriostatic activity of lldpe nanocomposite embedded with sol-gel synthesized TiO2/ZnO coupled oxides at various ratios. Polymers 2018, 10, 878. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Nitta, A.; Chen, Z.; Eda, T.; Yoshida, A.; Nation, S.C. NOx storage and reduction over potassium titanate nanobelt-based catalyst with high storage capacity. J. Catal. 2011, 280, 161–167. [Google Scholar] [CrossRef]
- Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, M.; Wojtyla, S.; Macyk, W. On oxygen activation at rutile- and anatase-TiO2. ACS Catal. 2015, 5, 7424–7431. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, Y.P.; Zhang, J.; Pan, C.X. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. 2012, 116, 7515–7519. [Google Scholar] [CrossRef]
- Kumari, R.; Majumdar, J.D. Heat-treated TiO2 plasma spray deposition for bioactivity improvement in ti-6Al-4V Alloy. J. Mater. Eng. Perform. 2017, 26, 6207–6218. [Google Scholar] [CrossRef]
- Moitzheim, S.; Balder, J.E.; Poodt, P.; Unnikrishnan, S.; Gendt, S.D.; Vereecken, P.M. Chlorine doping of amorphous TiO2 for increased capacity and faster Li+-Ion storage. Chem. Mater. 2017, 29, 10007–10018. [Google Scholar] [CrossRef]
- Du, J.M.; Zhang, J.L.; Liu, Z.M.; Han, B.X.; Jiang, T.; Huang, Y. Controlled synthesis of Ag/TiO2 core−shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir 2006, 22, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, R.G.; Xu, Q.; Han, H.X.; Li, C. Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions. Acta Phys. Chim. Sin. 2013, 29, 1566–1571. [Google Scholar]
- Luo, T.; Wan, X.J.; Jiang, S.X.; Zhang, L.Y.; Hong, Z.Q.; Liu, J. Preparation and photocatalytic performance of fibrous Tb3+-doped TiO2 using collagen fiber as template. Appl. Phys. Mater. Sci. Process. 2018, 124, 304. [Google Scholar] [CrossRef]
- Shi, Y.L.; Sun, H.J.; Nguyen, M.C.; Wang, A.Z.; Ho, K.M.; Saidi, W.A.; Zhao, J. Structures of defects on anatase TiO2 (001) surfaces. Nanoscale 2017, 9, 11553–11565. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Xu, J.Y.; Shen, H.; Lu, B.L. Etching behavior on (001) face of relaxor ferroelectric crystal pznt. J. Synth. Cryst. 2011, 40, 334–337. [Google Scholar]
- Hong, X.X.; Kang, Y.Y.; Zhen, C.; Kang, X.D.; Yin, L.C.; Wang, L.Z.; Irvine, J.T.S.; Liu, G.; Cheng, H.M. Maximizing the visible light photo electron chemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant (001) facets. Sci. Chin. Mater. 2018, 61, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.W.; Wang, M. Surface photocatalytic research of Fe-doped TiO2 (001) based on the first-principles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 32–40. [Google Scholar] [CrossRef]
- Liu, S.W.; Yu, J.G.; Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 2011, 23, 4085–4093. [Google Scholar] [CrossRef]
- Yu, J.G.; Qi, L.F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. 2010, 114, 13118–13125. [Google Scholar]
- Liu, S.W.; Yu, J.G.; Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 2010, 132, 11914–11916. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.M.; Zeng, Y.G.; Huang, T.C. Anatase TiO2 single crystals with dominant (001) facets: Facile fabrication from Ti powders and enhanced photocatalytical activity. Appl. Sur. Sci. 2013, 274, 117–123. [Google Scholar] [CrossRef]
- Yu, L.Q.; Dong, K.T.; Yang, C.; Wang, Q.Q.; Hou, Y.L. Facile synthesis and dehydrogenation properties of Fe3B nanoalloys. Mater. Lett. 2014, 132, 4–7. [Google Scholar] [CrossRef]
- Tan, L.L.; Ong, W.J.; Chai, S.P.; Mohamed, A.R. Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl. Catal. Environ. 2015, 166, 251–259. [Google Scholar] [CrossRef]
- Hotsenpiller, P.A.M.; Bolt, J.D.; Farneth, W.E.; Lowekamp, J.B.; Rohrer, G.S. Orientation dependence of photochemical reactions on TiO2 thin film surfaces. Abstr. Pap. Am. Chem. Soc. 1998, 216, 747. [Google Scholar]
- Yang, X.L.; Wang, Y.; Xu, X.; Ding, X.; Chen, H. Surface plasmon resonance-induced visible-light photocatalytic performance of silver/silver molybdate composites. Chin. J. Catal. 2017, 38, 260–269. [Google Scholar] [CrossRef]
- Xin, B.F.; Jing, L.Q.; Ren, Z.Y.; Wang, B.Q.; Fu, H.G. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. 2005, 109, 2805–2809. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.T.; Dong, X.N. Preparation and photocatalytic activity of noble metal ag selectively loading on high energy facet of TiO2 single crystal. J. Shanxi Univ. Sci. Technol. 2016, 34, 40–45. [Google Scholar]
- Zhang, Y.; Li, L.D.; Liu, H.Y. Photocatalytic reduction activity of {001} TiO2 codoped with F and Fe under visible light for bromate removal. J. Nanomater. 2016, 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Liu, B.S.; Nakata, K. Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO2 crystals. Chin. J. Catal. 2019, 40, 403–412. [Google Scholar] [CrossRef]
- Howard, C.J.; Sabine, T.M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Crystal. 1991, 47, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.S.; Yazaydın, A.O.; Snurr, R.Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 2010, 26, 5475–5483. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.C.; Ji, Z.Y.; Zou, W.X.; Gu, X.R.; Deng, Y.; Gao, F.; Tang, C.J.; Dong, L. In site loading transition metal oxide clusters on TiO2 nanosheets as Co-catalysts for exceptional high photoactivity. ACS Catal. 2013, 3, 2052–2061. [Google Scholar] [CrossRef]
- Zhong, M.; Wei, Z.H.; Si, P.Z.; Li, H.; Wei, G.Y.; Han, G.R.; Ge, H.L. Preparation of iron-doped titania nanocrystalline grains and its photocatalytic property. J. Chin. Ceram. Soc. 2010, 38, 68–73. [Google Scholar]
- Zhang, Y.Y.; Gu, D.; Zhu, L.Y. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocatalytic degradation of nitrobenzene. Appl. Surf. Sci. 2017, 420, 896–904. [Google Scholar] [CrossRef]
- Yu, J.G.; Ma, T.T.; Liu, S.W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotbes as electron-transfer channel. Phys. Chem. Chem. Phys. 2011, 13, 3491–3501. [Google Scholar] [CrossRef]
Samples | Crystallite Size D(101)/nm | TEM Particle Size/nm |
---|---|---|
Ag-TiO2 | 38.97 | – |
TiO2 | 41.44 | 80 |
Nano-TiO2 | 45.64 | – |
Samples | Surface Area (m2/g) | Pore Volume (cc/g) | Pore Diameter Dv(d)(nm) |
---|---|---|---|
TiO2 | 18.590 | 0.150 | 469.386 |
Ag-TiO2 | 12.570 | 0.044 | 1.936 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-Y.; You, J.; Li, Q.-W.; Dong, Z.-H.; Zhong, Y.-J.; Han, Y.-L.; You, Y.-H. Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001). Coatings 2020, 10, 27. https://doi.org/10.3390/coatings10010027
Zhang L-Y, You J, Li Q-W, Dong Z-H, Zhong Y-J, Han Y-L, You Y-H. Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001). Coatings. 2020; 10(1):27. https://doi.org/10.3390/coatings10010027
Chicago/Turabian StyleZhang, Li-Yuan, Jia You, Qian-Wen Li, Zhi-Hong Dong, Ya-Jie Zhong, Yan-Lin Han, and Yao-Hui You. 2020. "Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001)" Coatings 10, no. 1: 27. https://doi.org/10.3390/coatings10010027
APA StyleZhang, L.-Y., You, J., Li, Q.-W., Dong, Z.-H., Zhong, Y.-J., Han, Y.-L., & You, Y.-H. (2020). Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001). Coatings, 10(1), 27. https://doi.org/10.3390/coatings10010027