Impact of Albumin and Omeprazole on Steady-State Population Pharmacokinetics of Voriconazole and Development of a Voriconazole Dosing Optimization Model in Thai Patients with Hematologic Diseases
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Population PK Model Development
2.3. Model Evaluation and Validation
2.4. Simulation
3. Discussion
4. Materials and Methods
4.1. Patients and Ethics
4.2. Measurement of Voriconazole Plasma Concentrations
4.3. Data Collection
4.4. CYP2C19 Genotype Analysis
4.5. Population Pharmacokinetic Modeling Method
- Additive model (Cobs,ij = Cpred,ij + εij);
- Proportional model (Cobs,ij = Cpred,ij × (1 + εij));
- Combined proportional with additive model (Cobs,ij = Cpred,ij × (1 + ε1ij) + ε2ij).
4.6. Model Evaluation and Validation
4.7. Simulation
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Segal, B.H. Aspergillosis. N. Engl. J. Med. 2009, 360, 1870–1884. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef] [Green Version]
- Pfizer. Vfend®, Voriconazole. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/021266s039,021267s050,021630s029lbl.pdf (accessed on 24 February 2020).
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Tissot, F.; Agrawal, S.; Pagano, L.; Petrikkos, G.; Groll, A.H.; Skiada, A.; Lass-Florl, C.; Calandra, T.; Viscoli, C.; Herbrecht, R. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica 2017, 102, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Wingard, J.R.; Carter, S.L.; Walsh, T.J.; Kurtzberg, J.; Small, T.N.; Baden, L.R.; Gersten, I.D.; Mendizabal, A.M.; Leather, H.L.; Confer, D.L.; et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood 2010, 116, 5111–5118. [Google Scholar] [CrossRef] [Green Version]
- Marks, D.I.; Pagliuca, A.; Kibbler, C.C.; Glasmacher, A.; Heussel, C.P.; Kantecki, M.; Miller, P.J.; Ribaud, P.; Schlamm, H.T.; Solano, C.; et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. Br. J. Haematol. 2011, 155, 318–327. [Google Scholar] [CrossRef]
- Hamada, Y.; Tokimatsu, I.; Mikamo, H.; Kimura, M.; Seki, M.; Takakura, S.; Ohmagari, N.; Takahashi, Y.; Kasahara, K.; Matsumoto, K.; et al. Practice guidelines for therapeutic drug monitoring of voriconazole: A consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2013, 19, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [Green Version]
- Dolton, M.J.; McLachlan, A.J. Voriconazole pharmacokinetics and exposure-response relationships: Assessing the links between exposure, efficacy and toxicity. Int. J. Antimicrob. Agents 2014, 44, 183–193. [Google Scholar] [CrossRef]
- Shi, C.; Xiao, Y.; Mao, Y.; Wu, J.; Lin, N. Voriconazole: A review of population pharmacokinetic analyses. Clin. Pharmacokinet. 2019, 58, 687–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolton, M.J.; Mikus, G.; Weiss, J.; Ray, J.E.; McLachlan, A.J. Understanding variability with voriconazole using a population pharmacokinetic approach: Implications for optimal dosing. J. Antimicrob. Chemother. 2014, 69, 1633–1641. [Google Scholar] [CrossRef]
- Li, Z.W.; Peng, F.H.; Yan, M.; Liang, W.; Liu, X.L.; Wu, Y.Q.; Lin, X.B.; Tan, S.L.; Wang, F.; Xu, P.; et al. Impact of CYP2C19 Genotype and Liver Function on Voriconazole Pharmacokinetics in Renal Transplant Recipients. Ther. Drug Monit. 2017, 39, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Mould, D.R. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob. Agents Chemother. 2014, 58, 4718–4726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.B.; Li, Z.W.; Yan, M.; Zhang, B.K.; Liang, W.; Wang, F.; Xu, P.; Xiang, D.X.; Xie, X.B.; Yu, S.J.; et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br. J. Clin. Pharmacol. 2018, 84, 1587–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangal, N.; Hamadeh, I.S.; Arwood, M.J.; Cavallari, L.H.; Samant, T.S.; Klinker, K.P.; Bulitta, J.; Schmidt, S. Optimization of voriconazole therapy for the treatment of invasive fungal infections in adults. Clin. Pharmacol. Ther. 2018, 104, 957–965. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Sun, J.; Cai, J.; Cheng, X.; Dong, H.; Wang, X.; Xing, J.; Dong, W.; Yao, H.; et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J. Antimicrob. Chemother. 2014, 69, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qiu, T.; Liu, Y.; Wang, J.; Hu, K.; Bao, F.; Zhang, C. Model-based voriconazole dose optimization in Chinese adult patients with hematologic malignancies. Clin. Ther. 2019, 41, 1151–1163. [Google Scholar] [CrossRef]
- Kim, Y.; Rhee, S.J.; Park, W.B.; Yu, K.S.; Jang, I.J.; Lee, S. A Personalized CYP2C19 phenotype-guided dosing regimen of voriconazole using a population pharmacokinetic analysis. J. Clin. Med. 2019, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yang, T.; Li, X.; Ma, L.; Liu, Y.; Zhou, Y.; Ren, H.; Cui, Y. Population pharmacokinetics of voriconazole in Chinese patients with hematopoietic stem cell transplantation. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 659–668. [Google Scholar] [CrossRef]
- Han, K.; Capitano, B.; Bies, R.; Potoski, B.A.; Husain, S.; Gilbert, S.; Paterson, D.L.; McCurry, K.; Venkataramanan, R. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob. Agents Chemother. 2010, 54, 4424–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friberg, L.E.; Ravva, P.; Karlsson, M.O.; Liu, P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob. Agents Chemother. 2012, 56, 3032–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Xie, H.; Liang, F.; Meng, D.; Rui, J.; Yin, X.; Zhang, T.; Xiao, X.; Cai, S.; Liu, X.; et al. Population pharmacokinetics in China: The dynamics of intravenous voriconazole in critically ill patients with pulmonary disease. Biol. Pharm. Bull. 2015, 38, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Csajka, C.; Buclin, T.; Bolay, S.; Bille, J.; Calandra, T.; Marchetti, O. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: Population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin. Infect. Dis. 2012, 55, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Leitinger, E.; Hui, L.; Grigg, A. Is there a role for proton pump inhibitor prophylaxis in haematology patients? Intern. Med. J. 2019, 49, 694–701. [Google Scholar] [CrossRef]
- Chayakulkeeree, M.; Poovipirom, N.; Siengwattana, P.; Maneerattanaporn, M. Effect of proton pump inhibitor on plasma voriconazole concentration in Thai patients. J. Med. Assoc. Thai. 2015, 98, 232–237. [Google Scholar]
- Deluche, E.; Girault, S.; Jesus, P.; Monzat, S.; Turlure, P.; Leobon, S.; Abraham, J.; Daly, N.; Dauriac, O.; Bordessoule, D. Assessment of the nutritional status of adult patients with acute myeloid leukemia during induction chemotherapy. Nutrition 2017, 41, 120–125. [Google Scholar] [CrossRef]
- Dote, S.; Sawai, M.; Nozaki, A.; Naruhashi, K.; Kobayashi, Y.; Nakanishi, H. A retrospective analysis of patient-specific factors on voriconazole clearance. J. Pharm. Health Care Sci. 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Sukasem, C.; Tunthong, R.; Chamnanphon, M.; Santon, S.; Jantararoungtong, T.; Koomdee, N.; Prommas, S.; Puangpetch, A.; Vathesatogkit, P. CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors. Pharmgen. Pers. Med. 2013, 6, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Fujimoto, Y.; Kanbayashi, Y.; Ikawa, K.; Taniwaki, M. Pharmacokinetic-pharmacodynamic analysis of voriconazole in Japanese patients with hematological malignancies. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 1141–1143. [Google Scholar] [CrossRef]
- Han, K.; Bies, R.; Johnson, H.; Capitano, B.; Venkataramanan, R. Population pharmacokinetic evaluation with external validation and Bayesian estimator of voriconazole in liver transplant recipients. Clin. Pharmacokinet. 2011, 50, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Vanstraelen, K.; Wauters, J.; Vercammen, I.; de Loor, H.; Maertens, J.; Lagrou, K.; Annaert, P.; Spriet, I. Impact of hypoalbuminemia on voriconazole pharmacokinetics in critically ill adult patients. Antimicrob. Agents Chemother. 2014, 58, 6782–6789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, H.J.; Han, K.; Capitano, B.; Blisard, D.; Husain, S.; Linden, P.K.; Marcos, A.; Kwak, E.J.; Potoski, B.; Paterson, D.L.; et al. Voriconazole pharmacokinetics in liver transplant recipients. Antimicrob. Agents Chemother. 2010, 54, 852–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, A.; Noto, K.; Ota, R.; Yokoyama, S.; Hosomi, K.; Takada, M.; Matsuoka, H. Voriconazole trough concentration and hepatotoxicity in patients with low serum albumin. Int. J. Clin. Pharmacol. Ther. 2019, 57, 135–143. [Google Scholar] [CrossRef]
- Qi, F.; Zhu, L.; Li, N.; Ge, T.; Xu, G.; Liao, S. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int. J. Antimicrob. Agents 2017, 49, 403–409. [Google Scholar] [CrossRef]
- Wood, N.; Tan, K.; Purkins, L.; Layton, G.; Hamlin, J.; Kleinermans, D.; Nichols, D. Effect of omeprazole on the steady-state pharmacokinetics of voriconazole. Br. J. Clin. Pharmacol. 2003, 56 (Suppl. 1), 56–61. [Google Scholar] [CrossRef]
- Birkett, D.J.; Andersson, T.; Miners, J.O. Assays of omeprazole metabolism as a substrate probe for human CYP isoforms. Methods Enzymol. 1996, 272, 132–139. [Google Scholar] [CrossRef]
- Andersson, T.; Miners, J.O.; Veronese, M.E.; Birkett, D.J. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br. J. Clin. Pharmacol. 1994, 37, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Chau, M.M.; Kong, D.C.; van Hal, S.J.; Urbancic, K.; Trubiano, J.A.; Cassumbhoy, M.; Wilkes, J.; Cooper, C.M.; Roberts, J.A.; Marriott, D.J.; et al. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy, 2014. Intern. Med. J. 2014, 44, 1364–1388. [Google Scholar] [CrossRef]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 2008, 46, 1813–1821. [Google Scholar] [CrossRef]
- Sangsiriwut, K.; Chayakulkeeree, M. Rapid high performance liquid chromatographic assay for determination of voriconazole concentration in human plasma. J. Med. Assoc. Thai. 2013, 96 (Suppl. 2), S98–S103. [Google Scholar] [PubMed]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.A.; Agundez, J.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin. Pharmacol. Ther. 2017, 102, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Values |
---|---|
Gender, n (%) | Male: 41 (63.08), Female: 24 (36.92) |
Age *, yrs, mean ± SD (range) | 47.65 ± 15.22 (20–78) |
Body weight *, kg, mean ± SD (range) | 58.57 ± 13.83 (27.20–105.00) |
<40 kg, n (%) | 4 (6.15) |
40–90 kg, n (%) | 59 (90.77) |
>90 kg, n (%) | 2 (3.08) |
Underlying disease, n (%) | |
Hematologic diseases | AML 37 ** (56.92), Lymphoma 14 (21.54), ALL 9 (13.85), Others *** 5 (7.69) |
Hypertension | 3 (4.62) |
Coronary artery disease | 2 (3.08) |
Liver disease | 2 (3.08) |
Others **** | 6 (9.23) |
Baseline laboratory test, median (IQR) | |
Serum creatinine, mg/dL | 1.00 (0.70–1.3) |
Aspartate aminotransferase, U/L | 30.00 (22–49) |
Alanine aminotransferase, U/L | 26.00 (15–40) |
Alkaline phosphatase, U/L | 151.00 (105–216) |
Total bilirubin, mg/dL | 0.61 (0.40–1.00) |
Direct bilirubin, mg/dL | 0.35 (0.23–0.73) |
White blood cell, cells/mm3 | 550 (270–2410) |
Absolute neutrophil count, cells/mm3 | 120.00 (10–1350) |
Platelets, ×103/mm3 | 28.00 (12.00–54.00) |
Baseline laboratory test, mean ± SD (range) | |
Albumin *, g/dL | 3.04 ± 0.61 (1.60–4.3) |
Globulin *, g/dL | 3.47 ± 0.96 (1.50–6.5) |
Hemoglobin *, g/dL | 8.45 ± 1.25 (5.50–12.00) |
Hematocrit *, % | 24.36 ± 3.99 (14.90–38.10) |
CYP2C19 polymorphism, n (%) | |
Ultra-rapid metabolizer (UM) (* 1/* 17) | 1 (1.54) |
Extensive metabolizer (EM) (* 1/* 1) | 33 (50.77) |
Intermediate metabolizer (IM) (* 1/* 2, * 1/* 3, * 2/* 17) | 24 (36.92) |
Poor metabolizer (PM) (* 2/* 2, * 2/* 3) | 7 (10.77) |
Voriconazole dosing * (mg/kg/day), mean ± SD (range) | 7.18 ± 1.76 (3.81–14.71) |
Current medication, n (%) | |
Omeprazole 20 mg/day | 29 (44.62) |
Omeprazole ≥ 40 mg/day | 17 (26.15) |
Esomeprazole | 2 (3.08) |
Rabeprazole | 1 (1.54) |
Sulfamethoxazole/trimethoprim | 19 (29.23) |
Hormones | 6 (9.23) |
Steroids | 3 (4.62) |
Parameters | NONMEM Results | Bootstrap Results (100% Successful) | |||||
---|---|---|---|---|---|---|---|
Estimated Value | SE | 2.5th * | 97.5th * | Median | 2.5th | 97.5th | |
CL/F (L/h) | 3.430 | 0.287 | 2.867 | 3.993 | 3.430 | 2.919 | 4.095 |
V/F (L) | 47.600 | 6.600 | 34.664 | 60.536 | 47.811 | 35.621 | 63.973 |
Ka (/h) | FIX 1.100 | ||||||
CL-albumin | 0.249 | 0.0925 | 0.068 | 0.430 | 0.250 | 0.057 | 0.413 |
CL-omeprazole ≥ 40 mg/day | −0.306 | 0.084 | −0.471 | −0.141 | −0.300 | −0.458 | −0.058 |
IIV-CL | 0.226 | 0.0524 | 0.123 | 0.329 | 0.216 | 0.124 | 0.339 |
(%CV) | 50.40% | 36.18% | 62.42% | 49.10% | 36.33% | 63.53% | |
RUV (mg/L) | 2.67 | 0.706 | 1.286 | 4.054 | 2.576 | 1.546 | 4.373 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan-asa, B.; Punyawudho, B.; Singkham, N.; Chaivichacharn, P.; Karoopongse, E.; Montakantikul, P.; Chayakulkeeree, M. Impact of Albumin and Omeprazole on Steady-State Population Pharmacokinetics of Voriconazole and Development of a Voriconazole Dosing Optimization Model in Thai Patients with Hematologic Diseases. Antibiotics 2020, 9, 574. https://doi.org/10.3390/antibiotics9090574
Khan-asa B, Punyawudho B, Singkham N, Chaivichacharn P, Karoopongse E, Montakantikul P, Chayakulkeeree M. Impact of Albumin and Omeprazole on Steady-State Population Pharmacokinetics of Voriconazole and Development of a Voriconazole Dosing Optimization Model in Thai Patients with Hematologic Diseases. Antibiotics. 2020; 9(9):574. https://doi.org/10.3390/antibiotics9090574
Chicago/Turabian StyleKhan-asa, Buddharat, Baralee Punyawudho, Noppaket Singkham, Piyawat Chaivichacharn, Ekapun Karoopongse, Preecha Montakantikul, and Methee Chayakulkeeree. 2020. "Impact of Albumin and Omeprazole on Steady-State Population Pharmacokinetics of Voriconazole and Development of a Voriconazole Dosing Optimization Model in Thai Patients with Hematologic Diseases" Antibiotics 9, no. 9: 574. https://doi.org/10.3390/antibiotics9090574
APA StyleKhan-asa, B., Punyawudho, B., Singkham, N., Chaivichacharn, P., Karoopongse, E., Montakantikul, P., & Chayakulkeeree, M. (2020). Impact of Albumin and Omeprazole on Steady-State Population Pharmacokinetics of Voriconazole and Development of a Voriconazole Dosing Optimization Model in Thai Patients with Hematologic Diseases. Antibiotics, 9(9), 574. https://doi.org/10.3390/antibiotics9090574