Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Penicillins
3.2. Cephalosporins
3.3. Carbapenems
3.4. Monobactams
3.5. Quinolones
3.6. Aminoglycosides
3.7. Macrolides
3.8. Glycopeptides
3.9. Tetracyclines
3.10. Polymyxins
3.11. Daptomycin
3.12. Tigecycline
3.13. Linezolid
3.14. Rifampin
3.15. Miscellanea
3.16. Non-Antibiotic Molecules
4. Discussion
- (1)
- Cephalosporins and cephalosporins + β-lactamase inhibitors, including ceftazidime/avibactam and ceftolozane/tazobactam, for Enterobacterales and P. aeruginosa;
- (2)
- carbapenems for K. pneumoniae and P. aeruginosa;
- (3)
- quinolones for P. aeruginosa;
- (4)
- polymyxins for K. pneumoniae;
- (5)
- daptomycin for Staphylococcus spp (MRSA included), and Enterococcus spp.;
- (6)
- linezolid for Staphylococcus spp.; and
- (7)
- sulbactam for A. baumannii.
5. Conclusions
Strain | Year and Country | Author | Penicillin | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | Fosfomycin-Resistant (%) | penicillin-Resistant (%) | In Vitro (methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | Fosfomycin Susceptibility Restoration (%) | Penicillin Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Avery | piperacillin/tazobactam | 49 | 8 E. coli: KPC (25%), NDM (75%), ESBL (62.5%); 35 Klebsiella spp: KPC (45.7%), NDM (40%); OXA (14.3%), VIM (8.6%), ESBL (88.6%), fosA (44%); 2 Citrobacter spp: KPC (50%), NDM (50%), ESBL (50%), 4 E. cloacae: KPC (75%), NDM (25%), ESBL (75%) | 20 (40.8%) | 49 (100%) | in vitro (ET) | 1 (2%) | 2 (4%) | 46 (94%) | 0% | - | - | Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC50. | [11] |
2019, USA | Flamm | piperacillin/tazobactam | 20 | - | - | - | in vitro (CB, TK) | 12 (60%) | 7 (35%) | 0% | 0% | - | - | For 1 isolate the efficacy of FOS + PIP/TAZ remained indeterminate. | [38] | |
1978, Spain | Olay | ampicillin, carbenicillin | Ampicillin: 17 E. coli, 11 Klebsiella spp., 7 E. cloacae, 14 Proteus spp., 22 Salmonella spp. Carbenicillin: 16 E. coli, 32 S. marcescens, 26 Proteus spp. | - | - | - | in vitro (CB) | ampicillin: 31 (43%); carbenicillin: 24 (32%) | ampicillin: 31 (43%); carbenicillin: 31 (41%) | ampicillin: 9 (12%); carbenicillin: 19 (25%) | 0% | - | - | - | [14] | |
E. coli | 2020, Korea | Seok | piperacillin/tazobactam | 2 | ESBL (100%) | 0% | 1 (50%) | in vitro (TK) | 0% | 0% | 2 (100%) | 0% | - | - | - | [119] |
2018, France | Berleur | temocillin | 3 | KPC (33.3%), OXA (33.3%) | 0% | Breakpoints NA | in vitro (CB, TK); in vivo (mouse, peritonitis) | 0% | in vitro: 3 (100%); in vivo: 3 (100%) | 0% | 0% | - | - | - | [15] | |
2014, Sweden | Hickam | mecillinam | 2 | ESBL, OXA (50%) | 0% | 0% | in vitro (CB, TK) | 2 (100%) | 0% | 0% | 0% | - | - | - | [120] | |
1977, Poland | Borowski | ampicillin | 10 | - | - | - | in vitro (CB) | 7 (70%) | 1 (10%) | 2 (20%) | 0% | - | - | - | [121] | |
K. pneumoniae | 2014, Sweden | Hickam | mecillinam | 1 | ESBL, OXA (100%) | 0% | 0% | in vitro (CB, TK) | 1 (100%) | 0% | 0% | 0% | - | - | - | [120] |
Salmonella spp. | 1977, Spain | Perea | ampicillin | 90 | - | 17 (18.9%) | 11 (12%) | in vitro (CB, TK) | 74 (82%) | 7 (7%) | 7 (7%) | 0% | - | - | For 2 isolates the effect of FOS + ampicillin remained indeterminate. The authors considered synergistic the effect for FICI up to 0.75. | [104] |
1977, Spain | Figueroa | ampicillin | 16 | - | - | - | in vitro (CB) | 15 (93%) | 1 (6%) | 0% | 0% | - | - | S. typhi. The authors considered synergistic the effect for FICI up to < 1. They also evaluated different antibiotic combinations on patients with typhoid fever: FOS + AMP resulted in the highest rate of cures. | [105] | |
Shigella spp. | 1977, Spain | Perea | ampicillin | 50 | - | 27 (54%) | 30 (60%) | in vitro (CB, TK) | 27 (54%) | 9 (18%) | 14 (28%) | 0% | - | - | The authors considered synergistic the effect for FICI up to 0.75. | [104] |
P. aeruginosa | 2019, USA | Avery | piperacillin/tazobactam | 103 | - | NA (at least 71) | 103 (100%) | in vitro (ET) | 3 (2%) | 26 (25%) | 74 (71%) | 0% | - | 15 (14.6%) | - | [33] |
2019, USA | Flamm | piperacillin/tazobactam | 5 | - | - | - | in vitro (CB, TK) | 0% | 5 (100%) | 0% | 0% | - | - | - | [38] | |
2013, Brazil | dos Santos | piperacillin/tazobactam | 4 | - | 4 (100%) | 2 (50%) | in vitro (CB) | 4 (100%) | 0% | 0% | 0% | 2 (50%) | 1 (50%) | - | [48] | |
2002, Japan | Okazaki | piperacillin | 30 | - | 15 (50%) | 30 (100%) | in vitro (efficacy time index) | 3 (10%) | 6 (20%) | 21 (70%) | 0% | 0% | 15 (50%) | - | [39] | |
1984, Japan | Takahashi | piperacillin | 20 | - | - | - | in vitro (CB) | 4 (20%) | 16 (80%) | 0% | 0% | - | - | - | [122] | |
1978, Spain | Olay | carbenicillin | in vitro: 73; in vivo: 2 | - | - | - | in vitro (CB); in vivo (mouse, peritonitis) | in vitro: 21 (28%); in vivo: 2 (100%) | in vitro: 40 (54%) | in vitro: 12 (16%) | 0% | - | - | - | [14] | |
Acinetobacter spp. | 2019, USA | Flamm | piperacillin/tazobactam | 5 (A. baumannii-calcoaceticus species complex) | - | - | - | in vitro (CB, TK) | 3 (60%) | 1 (20%) | 0% | 0% | - | - | For 1 isolate the efficacy of FOS + PIP/TAZ remained indeterminate. | [38] |
S. aureus | 2015, Spain | del Río | amoxicillin + clavulanic acid | 10 | Methicillin-resistant Staphylococcus aureus (MRSA) (100%) | 1 (10%) | 10 (100%) | in vitro (TK) | in vitro: 8 (80%); in vivo: 2 (100%) | in vitro: 2 (20%) | 0% | 0% | - | - | - | [28] |
2003, Japan | Nakazawa | ampicillin | 32 | MRSA (100%) | 29 (91%) | 31 (96%) | in vitro (efficacy time index) | 4 (12%) | 2 (6%) | 26 (81%) | 0% | - | - | - | [18] | |
1997, Italy | Ferrara | oxacillin | 16 | MRSA (100%) | NA (at least 8) | 16 (100%) | in vitro (TK) | 3 (18%) | 3 (18%) | 4 (25%) | - | - | - | Addition or indifference was observed for the remaining 6 strains (data not shown). | [123] | |
1994, Japan | Komatsuzawa | oxacillin | 38 | MRSA (60.5%) | 33 (86.8%) | 23 (60%) | in vitro (CB) | 20 (52%) | 17 (44%) | 1 (2%) | 0% | - | - | - | [124] | |
1985, USA | Alvarez | methicillin | 148 | MRSA (100%) | NA (< 15) | 148 (100%) | in vitro (CB) | 69 (46%) | - | - | 1 (1%) | - | - | For the 78 remaining strains it was not specified if the combination FOS + methicillin acted with an additive or indifferent effect. | [12] | |
1978, Spain | Olay | ampicillin, carbenicillin | ampicillin: 27; carbenicillin: 28 | - | - | - | in vitro (CB) | ampicillin: 15 (55%); carbenicillin: 10 (35.7%) | ampicillin: 9 (33%); carbenicillin: 18 (64%) | ampicillin: 3 (11%); carbenicillin: 0% | 0% | - | - | - | [14] | |
1977, Poland | Borowski | penicillin G | 11 | - | - | - | in vitro (CB) | 5 (45%) | 2 (18%) | 4 (36%) | 0% | - | - | - | [121] | |
S. epidermidis | 1997, Italy | Ferrara | oxacillin | 12 | MRSE (100%) | NA (at least 6) | 12 (100%) | in vitro (TK) | 6 (50%) | 1 (8%) | 1 (8%) | - | - | - | Data of the other 4 strains are not shown. | [123] |
Streptococcus spp. | 2017, Germany | Gonzalez Moreno | benzylpenicillin | 3 | - | 1 (33.3%) | 0% | in vitro (microcalorimetry for biofilms) | 0% | 0% | 3 (100%) | 0% | - | - | S. agalactiae, S. pyogenes, S. oralis. High-dose FOS caused a delay of 8 h in the production of heat, compared with untreated controls, suggesting that the treatment could result in a reduction in the number of viable sessile cells, although not in complete biofilm eradication. | [9] |
1981, Spain | Vicente | penicillin G | 17 | - | 9 (53%) | 5 (29%) | in vitro (CB, TK); in vivo (rabbit, endocarditis) | in vitro: 4 (23%) | in vitro: 12 (71%); in vivo: 100% | in vitro: 1 (6%) | 0% | - | - | S. sanguis. The mean log10 CFU per gram of vegetations in the FOS + penicillin groups was significantly lower than that in the FOS groups but was not significantly lower than that in the penicillin group. | [17] | |
1978, Spain | Olay | ampicillin | 37 | - | - | - | in vitro (CB) | 12 (32%) | 11 (29%) | 14 (37%) | 0% | - | - | - | [14] | |
S. pneumoniae | 2001, Spain | Bañón Arias | penicillin | 10 | - | 1 (10%) | 8 (80%) | in vitro (TK) | 10 (100%) | 0% | 0% | 0% | - | - | Synergistic effect difficult to determine. It is reported as synergistic against all isolates based on authors’ considerations and on the comparison between cumulative efficacy of MIC + MIC and MIC/4 + MIC/4. | [125] |
1996, France | Chavanet | amoxicillin | 1 | - | 0% | 1 (100%) | in vivo (rabbit, fibrin clot infection) | 1 (100%) | 0% | 0% | 0% | - | - | - | [23] | |
1995, Japan | Kikuchi | benzylpenicillin | 51 | - | 0% | 51 (100%) | in vitro (CB, TK) | 9 (17%) | 42 (82%) | 0% | 0% | - | - | - | [126] | |
Enterococcus spp. | 2013, Taiwan | Tang | ampicillin | 10 E. faecium, 9 E. faecalis | VRE (100%) | 13 (68%) | 9 (47%) | in vitro (TK, biofilm) | TK: 3 (15%) | - | - | biofilm: 6 (31%) | - | - | The 3 isolates exhibiting synergistic effect were all E. faecium. The 6 isolates exhibiting antagonistic effect on biofilm formation were all E. faecalis. From the data reported in the paper it was not possible to establish the effect of the combination against the other isolates. | [13] |
1995, France | Pestel | penicillin | 10 | - | 10 (100%) | 6 (60%) | in vitro (CB, TK) | 6 (60%) | - | - | 0% | - | - | E. faecalis, E. faecium, E. casseliflavus, E. durans. The authors did not distinguish between additive and indifferent effect. | [127] | |
E. faecalis | 2011, Italy | Farina | ampicillin | 27 | - | 2 (7%) | 0% | in vitro (ET) | 2 (7%) | 0% | 25 (92%) | 0% | - | - | The Authors considered 0.5 < FICI ≤ 4 as indifferent. | [128] |
E. faecium | 2013, USA | Descourouez | amoxicillin | 4 | VRE (100%) | 0% | 4 (100%) | in vitro (TK) | 100% | 0% | 0% | 0% | - | - | The combination resulted also strongly bactericidal. | [67] |
Strain | Year and Country | Author | Cephalosporin | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | cephalosporin-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Cephalosporin Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Avery | cefepime (FEP), ceftolozane/tazobactam (C/T), ceftazidime (CTZ), ceftazidime/avibactam (CZA) | 49 (26 tested for CZA) | 8 E. coli: KPC (25%), NDM (75%), ESBL (62%); 35 Klebsiella spp: KPC (45%), NDM (40%); OXA (14%), VIM (8%), ESBL (88%), fosA (44%); 2 Citrobacter spp: KPC (50%), NDM (50%), ESBL (50%), 4 E. cloacae: KPC (75%), NDM (25%), ESBL (75%) | 20 (40%) | 49 (100%) | in vitro (ET) | FEP: 2 (4%); C/T: 8 (16%); CTZ: 3 (6%); CZA: 0% | FEP: 5 (10%); C/T: 11 (22%); CTZ: 8 (16.3%); CZA: 3 (11.5%) | FEP: 42 (85%); C/T: 30 (61%); CTZ: 38 (77%); CZA: 23 (88%) | 0% | 0% | 0% | Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC50. | [11] |
2019, USA | Flamm | ceftazidime | 20 | - | - | - | in vitro (CB, TK) | 8 (40%) | 10 (50%) | 0% | 0% | - | - | For 2 isolates the efficacy of FOS + CTZ remained indeterminate. | [38] | |
1978, Spain | Olay | cephalexin | 23 E. coli, 29 Salmonella spp., 8 Klebsiella spp., 11 E. cloacae, 16 S. marcescens, 16 Proteus spp. | - | - | - | in vitro (CB) | 42 (40%) | 46 (44%) | 15 (14%) | 0% | - | - | - | [14] | |
E. coli | 2020, Korea | Seok | cefixime | 4 | ESBL (50%) | 0% | 2 (50%) | in vitro (TK) | 4 (100%) | 0% | 0% | 0% | - | - | - | [119] |
2014, France | Lefort | cefoxitim | 2 | ESBL (50%) | 0% | breakpoints NA | in vitro (TK); in vivo (mouse, urinary tract infection) | in vitro: 2 (100%); in vivo: 2 (100%) | 0% | 0% | 0% | - | - | - | [30] | |
K. pneumoniae | 2019, Poland | Ojdana | ceftazidime-avibactam | 19 | NDM (52%); KPC (42%); OXA (5%) | 10 (53%) | 10 (53%) | in vitro (ET) | 9 (47%) | 7 (36%) | 3 (15%) | 0% | - | - | - | [31] |
2019, USA | Mikhail | ceftazidime-avibactam | 21 | fosA/fosA-like, KPC, ESBL, OXA (100%) | 15 (71%) | 0% | in vitro (CB, TK) | 10 (47%) | 9 (42%) | 2 (9%) | 0% | - | 0% (all S) | It is reported only the reduction of CZA in combination and time–kill was performed only on 2 isolates randomly selected, therefore a reduction of at least 4 times was considered as synergistic. A 2-fold reduction was considered as additive. No reduction was considered as indifferent. In increase of MIC in combination was considered antagonistic. | [21] | |
1977, Spain | Daza | cephapirin | 33 | - | 100% | breakpoints NA | in vitro (CB) | 1 (3%) | - | - | - | 0% | Breakpoints NA (reduction of MIC from 16 to 4 µg/mL) | The authors reported only the number of isolates on which the combination had a synergistic effect. | [66] | |
P. aeruginosa | 2020, Brazil | Cuba | ceftolozane/tazobactam | 27 | carbapenemase-producing (74%) | 26 (96%) | 22 (81%) | in vitro (ET, TK) | 24 (88%) | 3 (11%) | 0% | 0% | 24 (92%) | - | It is not possible to establish the % of strains with FOS susceptibility restoration because the MIC for all R strains was > 64 ug/mL and it is not reported the MIC in combination but the MIC fold reduction. It is however strongly reduced (range: 2–16 fold reduction). | [32] |
2020, USA | Mullane | cefepime, ceftolozane/tazobactam | 28 CEF; 15 C/T | - | - | - | in vitro (CB, TK) | CEF: 5 (18%); C/T: 5 (33%) | CEF: 20 (71%); C/T: 8 (53%) | CEF: 3 (11%); C/T: 2 (14%) | 0% | - | CEF: 1 (4%); C/T: 5 (33%) | - | [129] | |
2019, USA | Mikhail | ceftazidime-avibactam | 21 | fosA/fosA-like, KPC, ESBL, OXA (100% at least 1 resistance gene) | 19 (90%) | 5 (23%) | in vitro (CB, TK) | 7 (33%) | 6 (28%) | 8 (38%) | 0% | - | 1 (20%) | It is reported only the reduction of CZA in combination and time–kill was performed only on 2 isolates randomly selected, therefore a reduction of at least 4 times was considered as synergistic. A 2-fold reduction was considered as additive. No reduction was considered as indifferent. In increase of MIC in combination was considered antagonistic. | [21] | |
2019, USA | Papp-Wallace | ceftazidime-avibactam | 1 | - | 0% | 1 (100%) | in vitro (CB, TK); in vivo (mouse) | in vitro: 100%; in vivo: 100% | 0% | 0% | 0% | - | - | - | [29] | |
2019, USA | Avery | cefepime (FEP), ceftolozane/tazobactam (C/T), ceftazidime (CAZ), ceftazidime/avibactam (CZA) | 92 FEP, 14 C/T, 81 CAZ, 16 CZA | Carbapenem-resistant (100%) | - | 100% | in vitro (ET) | FEP: 22 (23%); C/T: 7 (50%); CAZ: 42 (51%); CZA: 4 (25%) | FEP: 53 (57%); C/T: 5 (35%); CAZ: 31 (38%); CZA: 12 (75%) | FEP: 17 (18%); C/T: 2 (14%); CAZ: 8 (9%); CZA: 0% | 0% | - | FEP: 56 (60%); C/T: 10 (71%); CAZ: 46 (56%); CZA: 11 (68%) | - | [33] | |
2019, USA | Flamm | ceftazidime | 5 | - | - | - | in vitro (CB, TK) | 2 (40%) | 3 (60%) | 0% | 0% | - | - | - | [38] | |
2018, USA | Monogue | ceftolozane/tazobactam | 4 | - | 3 (75%) | 2 (50%) | in vitro (TK) | 1 (25%) | 2 (50%) | 1 (25%) | 0% | - | - | - | [34] | |
2013, Brazil | dos Santos | ceftazidime | 3 | - | 3 (100%) | 3 (100%) | in vitro (CB) | 3 (100%) | 0% | 0% | 0% | 1 (33%) | 2 (66%) | - | [48] | |
2005, Thailand | Pruekprasert | ceftazidime | 18 | - | - | - | in vitro (CB) | 2 (11%) | 6 (33%) | 6 (33%) | 4 (22%) | - | - | - | [22] | |
2002, Japan | Okazaki | ceftazidime, cefepime | 30 | - | 15 (50%) | CAZ: 28 (93%), CEFP: 26 (86.7%) | in vitro (efficacy time index) | CAZ: 21 (70%); CEFP: 24 (80%) | CAZ: 8 (26%); CEFP: 1 (3.3%) | CAZ: 1 (3%); CEFP: 5 (16%) | 0% | CAZ: 3 (20%); CEFP: 6 (40%) | CAZ: 19 (67%); CEFP: 26 (100%) | - | [39] | |
1999, Japan | Hayami | ceftazidime | 26 | - | NA (at least 13) | NA (at least 5) | in vitro (CB, TK) | 7 (26%) | 14 (53%) | 5 (19%) | 0% | - | - | - | [130] | |
1997, France | Tessier | ceftazidime | 40 | - | 21 (52%) | 14 (35%) | in vitro (CB) | 0% | 8 (20%) | 32 (80%) | 0% | 20 (95%) | 8 (57%) | Although the combination had a synergistic effect on no tested strains, it is of clinical relevance as it restored FOS and CTZ susceptibility in many resistant isolates. | [131] | |
1984, Japan | Takahashi | cefoperazone, cefsulodin | 20 (cefoperazone), 23 (cefsulodin) | - | - | - | in vitro (CB) | cefoper: 17 (85%); cefsul: 19 (92%) | cefoper: 3 (15%); cefsul: 4 (17%) | 0% | 0% | - | - | - | [122] | |
A. baumannii | 2019, USA | Flamm | ceftazidime | 5 (A. baumannii-calcoaceticus species complex) | - | - | - | in vitro (CB, TK) | 2 (40%) | 1 (20%) | 1 (20%) | 0% | - | - | For 1 isolate the efficacy of FOS + CTZ remained indeterminate. | [38] |
1996, Spain | Martinez-Martinez | ceftazidime | 34 | - | 34 (100%) | 32 (94%) | in vitro (CB) | 1 (3%) | NA | NA | 0% | - | - | Only synergistic and antagonistic effect reported. | [132] | |
Staphylococcus spp. | 1995, Italy | Marchese | cefdinir | 6 S. aureus, 8 S. epidermidis, 2 S. hominis, 2 S. xylosus, 5 S. saprophyticus, 2 S. haemolyticus | Penicillin-resistant (100%) | - | - | in vitro (CB, TK) | 4 (16%) | - | - | 0% | - | - | The authors considered 0.5 < FICI ≤ 4 as indifferent, therefore it is not possible to establish if the effect was additive or indifferent for most strains. | [114] |
S. aureus | 2003, Japan | Nakazawa | flomoxef sodium (FS), cefmetazole (CEM), cefotiam (CET), cefoperazone/sulbactam (CS) | 32 | MRSA (100%) | 29 (91%) | FS: 29 (91%); CEM: 16 (50%); CET: 30 (94%); CS: 27 (84%) | in vitro (efficacy time index) | FS: 7 (22%); CEM: 26 (81%); CET: 7 (22%); CS: 19 (59%) | FS: 11 (34%); CEM: 3 (9%); CET: 1 (3%); CS: 8 (25%) | FS: 14 (44%); CEM: 3 (9%); CET: 22 (69%); CS: 5 (15%) | 0% | - | - | - | [18] |
1978, Spain | Olay | cephalexin | 24 | - | - | - | in vitro (CB) | 17 (70.8%) | 7 (29.2%) | 0% | 0% | - | - | - | [14] | |
2015, Spain | del Río | ceftriaxone | in vitro 10; in vivo 2 | MRSA (100%) | 1 (10%) | 10 (100%) | in vitro (TK); in vivo (rabbit, endocarditis) | in vitro: 8 (80%); in vivo: 2 (100%) | in vitro: 2 (20%) | 0% | 0% | - | - | % of sterile vegetations: FOS alone 0%, IMI alone 0%, FOS + CRO 62%. | [28] | |
1985, Germany | Portier | cefotaxime, cephalotin, cefoperazone, cefamandole | 10 | MRSA (100%) | 0% | 10 (100%) | in vitro (CB) | cefotaxime, cephalotin, cefoperazone, cefamandole: 10 (100%) | 0% | 0% | 0% | - | - | - | [20] | |
1990, France | Chavanet | cefotaxime | 1 | MGRSA (100%) | 0% | 1 (100%) | in vivo (rabbit, subcutaneous fibrin clots) | 1 (100%) | 0% | 0% | 0% | - | - | Synergistic effect was observed when both drugs were administered in two divided doses. | [27] | |
1985, France | Kazmierczak | cefotaxime | 1 | - | 0% | 1 (100%) | in vivo (rabbit, meningitis) | 0% | 1 (100%) | 0% | 0% | - | - | Cefotaxime: variable drop in bacterial numbers from one rabbit to another during the first 12 h, then a bacteriostasis. FOS: rapid bactericidal effect during the first 12 h, becoming slower during the following 36 h (0.03% surviving bacteria at 48 h). Cefotaxime + FOS: rapid bactericidal effect remaining steady over the 48-h period (0.001% surviving bacteria at 48 h). | [26] | |
1991, Japan | Matsuda | cefmetazole | 25 | MRSA (100%) | 25 (100%) | 25 (100%) | in vitro (CB, TK) | 11 (44%) | 11 (44%) | 3 (12%) | 0% | - | - | - | [133] | |
1986, Japan | Utsui | cefmetazole | 14 in vitro, 7 in vivo | MRSA (100%) | - | 14 (100%) | in vitro (CB, TK); in vivo (mouse) | in vitro: 10 (71%); in vivo: 5 (71%) | in vitro: 4 (28%); in vivo: 2 (28%) | 0% | 0% | - | - | - | [25] | |
1987, France | Courcol | ceftriaxone | 6 | - | 1 (16.%) | 6 (100%) | in vitro (CB, TK) | CB: 1 (16%); TK: 1 (16%) | CB: 0%; TK: - | CB: 4 (66%); TK: 3 (50%) | CB: 1 (16%); TK: - | - | - | Different activity of the drug combination with checkerboard assay or time–kill assay. The effect of FOS + ceftriaxone on 2 isolates remained indeterminate. The authors considered the combination antagonistic when the FICI was > 2. | [19] | |
1985, USA | Alvarez | cefamandole | 148 | MRSA (100%) | NA (<15) | - | in vitro (CB) | 97 (66%) | - | - | 0% | - | - | For the 78 remaining isolates it was not specified if the combination FOS + cefamandole acted with an additive or indifferent effect. | [12] | |
2001, Austria | Grif | cefazolin | 5 | MRSA (20%), GISA (20%) | - | - | in vitro (CB, TK) | 5 (100%) | 0% | 0% | 0% | - | - | - | [43] | |
S. epidermidis | 2001, Austria | Grif | cefazolin | 2 | - | - | - | in vitro (CB, TK) | 0% | 0% | 2 (100%) | 0% | - | - | - | [43] |
1987, France | Courcol | ceftriaxone | 6 | - | 2 (33.3%) | 6 (100%) | in vitro (CB, TK) | CB: 1 (16%); TK: 5 (83.3%) | CB: 0%; TK: - | CB: 5 (83%); TK: - | CB: 1 (16%); TK: - | - | - | Different activity of the drug combination with checkerboard assay or time–kill assay. The effect of FOS + ceftriaxone on 1 isolate remained indeterminate. The authors considered the combination antagonistic when the FICI was > 2. | [19] | |
S. pneumoniae | 2006, Spain | Ribes | ceftriaxone | 2 | - | 0% | 2 (100%) | in vitro (TK); in vivo (rabbit, meningitis) | 0% | in vitro: 1 (50%); in vivo: 2 (100%) | in vitro: 1 (50%) | 0% | - | - | - | [24] |
2001, Spain | Bañón Arias | ceftriaxone | 10 | - | 1 (10%) | 7 (70%) | in vitro (TK) | 10 (100%) | 0% | 0% | 0% | - | - | Synergistic effect difficult to determine. It is reported as synergistic against all isolates based on authors’ considerations and on the comparison between cumulative efficacy of MIC + MIC and MIC/4 + MIC/4. | [125] | |
1994, France | Doit | ceftriaxone | 26 | - | 0% | 20 (76%) | in vitro (TK) | 0% | 26 (100%) | 0% | 0% | - | - | - | [134] | |
1993, France | Barakett | cefotaxime | 7 | - | 0% | 2 (28%) | in vitro (TK) | 3 (42%) | 1 (14%) | 3 (42%) | 0% | - | - | - | [135] | |
1995, France | Chavanet | cefotaxime, ceftriaxone | 1 | - | 0% | 1 (100%) | in vitro (TK); in vivo (rabbit, fibrin clot infection) | in vitro: 0%; in vivo: 1 (100%, cefotaxime) | in vitro: 1 (100%, both cefotaxime and ceftriaxone); in vivo: 1 (100%, ceftriaxone) | 0% | 0% | - | - | - | [23] | |
S. sanguis | 1981, Spain | Vicente | cefoxitim | 17 | - | 9 (53%) | 3 (16%) | in vitro (CB, TK); in vivo (rabbit, endocarditis) | in vitro: 8 (47%); in vivo: 100% | in vitro: 8 (47%) | in vitro: 1 (6%) | 0% | - | - | The mean log10 CFU per gram of vegetations in the FOS + cefoxitim groups was significantly lower than that in the FOS groups and in the cefoxitim groups. | [17] |
Enterococcus spp. | 1995, France | Pestel | cefotaxime | 50 | - | 48 (96%) | 50 (100%) | in vitro (CB, TK) | 45 (90%) | - | 5 (10%) | 0% | - | - | E. faecalis, E. faecium, E. casseliflavus, E. durans. The authors did not distinguish between additive and indifferent effect. | [127] |
E. faecalis | 2011, Italy | Farina | ceftriaxone | 27 | - | 2 (7%) | 27 (100%) | in vitro (ET) | 15 (55%) | 0% | 12 (44%) | 0% | - | - | The authors did not distinguish between additive and indifferent effect, considering 0.5 < FICI ≤ 4 as indifferent. | [128] |
N. gonorrhoeae | 2015, Switzerland | Hauser | ceftriaxone | 8 | - | 0% | 1 (12.5%) | in vitro (CB) | 0% | 0% | 8 (100%) | 0% | - | - | - | [57] |
2015, The Netherlands | Wind | cefixime, ceftriaxone | 4 | - | - | - | in vitro (ET) | 0% | cefixime: 1 (25%); ceftriaxone: 2 (50%) | cefixime: 3 (75%); ceftriaxone: 2 (50%) | 0% | - | - | - | [54] | |
2014, USA | Barbee | cefixime, ceftriaxone | 32 | - | 0% | cefotaxime: 29 (90%), cefixime: 6 (18%), ceftriaxone: 0% | in vitro (ET) | 0% | 0% | 32 (100%) | 0% | - | - | The authors did not distinguish between additive and indifferent effect, considering 0.5 < FICI ≤ 4 as indifferent. | [136] |
Strains | Year and Country | Author | Carbapenem | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Carbapenem-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Carbapenem Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Avery | meropenem | 49 | 8 E. coli: KPC (25%), NDM (75%), ESBL (62%); 35 Klebsiella spp: KPC (45%), NDM (40%); OXA (14%), VIM (8%), ESBL (88%), fosA (44%); 2 Citrobacter spp: KPC (50%), NDM (50%), ESBL (50%), 4 E. cloacae: KPC (75%), NDM (25%), ESBL (75%) | 20 (40.8%) | 49 (100%) | in vitro (ET) | 1 (2%) | 10 (20%) | 38 (77%) | 0% | - | - | Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC50. | [11] |
2019, USA | Flamm | meropenem | 20 | - | - | - | in vitro (CB, TK) | 8 (40%) | 10 (50%) | 0% | 0% | - | - | For 2 isolates the efficacy of FOS + meropenem (MER) remained indeterminate. | [38] | |
E. coli | 2020, Egypt | El-Wafa | imipenem | 8 | - | 3 (37.5%) | 7 (87.5%) | in vitro (CB, TK) | 2 (25%) | 5 (62%) | 0% | 0% | 2 (66%) | 6 (87%) | For 1 isolate the efficacy of FOS + MER remained indeterminate | [42] |
2019, India | Sugathan | meropenem | 50 | - | 0% | 8 (16%) | in vitro (TK) | 34 (68%) | 14 (28%) | 2 (4%) | 0% | 0% (all S) | 2 (25%) | - | [137] | |
2019, Germany | Loose | meropenem, ertapenem | 4 | - | 1 (25%) | 3 (75%) | in vitro (CB) | 4 (100%) | 0% | 0% | 0% | - | - | - | [138] | |
2013, Austria | Lingscheid | doripenem | 10 | ESBL (80%), AmpC (20%) | 0% | - | in vitro (CB, TK) | 8 (80%) | - | . | 0% | - | - | The authors reported FICI ranging from 0.5 to 4, without distinction between additive and indifferent effect. | [139] | |
2012, Greece | Samonis | imipenem, meropenem, doripenem | 20 | ESBL (100%) | 0% | 0% | in vitro (ET) | IMI: 11 (55%); MER: 5 (25%); DORI: 6 (30%) | IMI: 9 (45%); MER: 15 (75%); DOR: 14 (70%) | 0% | 0% | - | - | - | [86] | |
2010, Thailand | Netikul | ertapenem, imipenem, meropenem, doripenem | 8 | ESBL (87%) | 0% | 8 (100%) | in vitro (ET) | 0% | ERT: 5 (62%); IMI: 2 (25%); MER: 2 (25%); DOR: 1 (12%) | ERT: 3 (37%); IMI: 6 (75%); MER: 6 (75%); DOR: 7 (87%) | 0% | - | - | - | [140] | |
K. pneumoniae | 2020, India | Bakthavatchalam | meropenem | 50 | OXA (78%), NDM (32%) | - | 50 (100%) | in vitro (TK) | 10 (20%) | 0% | 40 (80%) | 0% | - | - | - | [141] |
2020, Turkey | Erturk Sengel | meropenem | 17 | OXA (70%), NDM (70%) | 7 (41%) | 17 (100%) | in vitro (CB, TK) | 15 (88%) | 2 (11%) | 0% | 0% | 4 (23%) | - | - | [142] | |
2019, Germany | Loose | meropenem, ertapenem | 3 | - | 3 (100%) | 2 (66%) | in vitro (CB) | 2 (66%) | 1 (33%) | 0% | 0% | - | - | - | [138] | |
2019, Brazil | Perdigão Neto | meropenem | 9 | ESBL, KPC (100%); OXA (4%), fosA (100%) | 9 (100%) | 9 (100%) | in vitro (CB, TK) | 8 (88%) | 0% | 1 (11%) | 0% | 2 (22%) | 0% | - | [143] | |
2017, Taiwan | Tseng | meropenem | 25 | see comments | 12 (48%) | 24 (96%) | in vitro (CB) | 25 (100%) | 0% | 0% | 0% | - | - | The 25 isolates were randomly selected among 642 isolates with the following resistance determinants: fosA3 (5.5%), foskp96 (4.2%), KPC (10.1%), IMP (0.8%), VIM (0.2%). It is not reported which carbapenemases and fosfomycinases were present in the 25 isolates tested for synergism. | [144] | |
2017, China | Yu | imipenem, ertapenem | 136 | KPC (100%) | 78 (57%) | 136 (100%) | in vitro (CB, TK) | IMI: 21 (15%); ERT: 30 (22%) | IMI: 114 (83%); ERT: 104 (76%) | IMI: 1 (1%); ERT: 2 (1%) | 0% | - | - | - | [89] | |
2016, Brazil | Albiero | meropenem | 18 | KPC (100%) | 13 (72%) | 16 (89%) | in vitro (CB) | 12 (66%) | 3 (16%) | 3 (16%) | 0% | 12 (92.3%) | 4 (25%) | - | [145] | |
2014, Sweden | Tängdén | meropenem | 4 | NDM (50%), VIM (50%), ESBL (100%) | 2 (50%) | 3 (75%) | in vitro (TK) | 0% | 0% | 4 (100%) | 0% | - | - | - | [146] | |
2013, Turkey | Evren | imipenem, meropenem | 12 | OXA-48 (100%) | 12 (100%) | 12 (100%) | in vitro (CB) | IMI: 5 (41%); MER: 4 (33%) | IMI: 6 (50%); MER: 6 (50%) | IMI: 1 (8%); MER: 2 (16%) | 0% | - | - | - | [74] | |
2013, Austria | Lingscheid | doripenem | 5 | ESBL (60%), AmpC (100%) | 0% | - | in vitro (CB, TK) | 5 (100%) | 0% | 0% | 0% | - | - | - | [139] | |
2012, Greece | Samonis | imipenem, meropenem, doripenem | 64 | KPC (78%), ESBL (21%) | 1 (1%) | 51 (78% ) | in vitro (ET) | KPC: IMI: 37 (74%); MER: 35 (70%); DOR: 37 (74%). ESBL: IMI: 11 (78%); MER: 6 (42%); DOR: 6 (42%) | KPC: IMI: 13 (26%); MER: 15 (30%); DOR: 13 (26%). ESBL: IMI: 3 (21%); MER: 8 (57%); DOR: 8 (57%) | 0% | 0% | - | - | - | [86] | |
2011, Greece | Souli | meropenem | 17 | KPC (100%) | 4 (23%) | 17 (100%) | in vitro (TK) | 11 (64%) | 0% | 6 (35%) | 0% | - | - | - | [53] | |
2010, Thailand | Netikul | ertapenem, imipenem, meropenem, doripenem | 8 | ESBL (87%) | 4 (50%) | 8 (100%) | in vitro (ET) | 0% | ERT: 5 (62%); IMI: 2 (25%); MER: 1 (12%); DOR: 2 (25%) | ERT: 3 (37%); IMI: 6 (75%); MER: 7 (87%); DOR: 6 (75%) | 0% | - | - | - | [140] | |
E. cloacae | 2019, Germany | Loose | meropenem, ertapenem | 2 | - | 2 (100%) | 1 (50%) | in vitro (CB) | 0% | 2 (100%) | 0% | 0% | - | - | - | [133] |
2013, Austria | Lingscheid | doripenem | 3 | 1 (33%) | 0% | - | in vitro (CB, TK) | 1 (33%) | - | - | 0% | - | - | The authors reported FICI ranging from 0.5 to 4, without distinction between additive and indifferent effect. | [139] | |
P. aeruginosa | 2020, USA | Mullane | meropenem | 30 | - | 14 (47%) | 30 (100%) | in vitro (CB, TK) | 5 (17%) | 9 (30%) | 16 (53%) | 0% | 0% | 0% | - | [129] |
2019, USA | Avery | meropenem | 153 | - | NA (at least 71) | 153 (100%) | in vitro (ET) | 29 (19%) | 55 (35%) | 69 (45%) | 0% | - | 21 (13%) | - | [33] | |
2019, Brazil | Albiero | meropenem | 19 | MBL (52%) | 17 (89%) | 16 (84%) | in vitro (CB) | 15 (88%) | 3 (15%) | 1 (5%) | 0% | 15 (88%) | 7 (43%) | - | [147] | |
2019, USA | Flamm | meropenem | 5 | - | - | - | in vitro (CB, TK) | 1 (20%) | 3 (60%) | 1 (20%) | 0% | - | - | - | [38] | |
2019, Brazil | Perdigão Neto | meropenem | 1 | OXA, fosA (100%) | 1 (100%) | 1 (100%) | in vitro (CB, TK) | 1 (100%) | 0% | 0% | 0% | 1 (100%) | 1 (100%) | - | [143] | |
2018, USA | Drusano | meropenem | 1 | - | - | - | in vitro (hollow-fiber infection model) | 1 (100%) | 0% | 0% | 0% | - | - | Combination therapy was able to counterselect resistance emergence. | [148] | |
2017, Spain | Hamou-Segarra | imipenem | 4 | - | 1 (25%) | - | in vitro (TK) | 4 (100%) | 0% | 0% | 0% | - | - | FOS and imipenem (IMI) alone lead to bacterial regrowth, while no regrowth was observed with the combination FOS + IMI. | [149] | |
2015, Thailand | Kunakonvichaya | imipenem, meropenem, doripenem | 70 | - | - | 70 (100%) | in vitro (CB, TK) | IMI: 38%; MER: 40%; DOR: 45% | - | - | - | - | - | FOS in association with a carbapenem was observed to reduce also biofilm formation. | [150] | |
2013, Brazil | dos Santos | imipenem | 4 | - | 4 (100%) | 2 (50%) | in vitro (CB) | 4 (100%) | 0% | 0% | 0% | 3 (75%) | 1 (50%) | - | [48] | |
2013, Austria | Lingscheid | doripenem | 18 | - | - | - | in vitro (CB, TK) | 0% | 0% | 18 (100%) | 0% | - | - | The authors reported FICI ranging from 0.5 to 4, without distinction between additive and indifferent effect, and considered the combination "indifferent" against all isolates. | [139] | |
2012, Greece | Samonis | imipenem, meropenem, doripenem | 15 | - | 1 (1%) | 9 (60%) | in vitro (ET) | IMI: 7 (46%); MER: 8 (53%); DOR: 11 (73%) | IMI: 8 (53%); MER: 7 (46%); DOR: 4 (26%) | 0% | 0% | - | - | - | [86] | |
2005, Thailand | Pruekprasert | imipenem | 29 | - | - | - | in vitro (CB) | 11 (38%) | 4 (14%) | 12 (41%) | 2 (7%) | - | - | - | [22] | |
2002, Japan | Okazaki | imipenem, meropenem | 30 | - | 15 (50%) | IMI: 29 (96%); MER: 27 (90%) | in vitro (efficacy time index) | IMI: 22 (73%); MER: 26 (86%) | IMI: 0%; MER: 2 (6%) | IMI: 8 (26%); MER: 2 (6%) | 0% | IMI: 2 (13%); MER: 3 (20%) | IMI: 21 (72%); MER: 16 (59%) | - | [39] | |
1999, Japan | Hayami | meropenem | 26 | - | NA (at least 13) | NA (at least 5) | in vitro (CB, TK) | 3 (11%) | 15 (57%) | 8 (30%) | 0% | - | - | - | [130] | |
1997, France | Tessier | imipenem | 40 | - | 20 (50%) | 9 (22%) | in vitro (CB) | 0% | 15 (37%) | 25 (62%) | 0% | 17 (85%) | 8 (88%) | Although the combination had a synergistic effect on no tested strains, it is of clinical relevance as it restored FOS and IMI susceptibility in almost all R isolates. | [131] | |
A. baumannii | 2019, USA | Flamm | meropenem | 5 (A. baumannii-calcoaceticus species complex) | - | - | - | in vitro (CB, TK) | 1 (20%) | 3 (60%) | 0% | 0% | - | - | For 1 isolate the efficacy of FOS + MER remained indeterminate. | [38] |
2018, China | Zhu | imipenem | 21 | - | 20 (95%) | 21 (100%) | in vitro (CB) | 12 (57%) | 3 (14.3%) | 6 (28%) | 0% | - | - | - | [151] | |
2018, Thailand | Singkham-In | imipenem, meropenem | 23 | OXA (100%) | 23 (100%) | 23 (100%) | in vitro (CB, TK) | IMI: 65%; MER: 0% | IMI: 30.4%; MER: 87% | IMI: 4%; MER: 13% | 0% | - | - | - | [152] | |
2016, Brazil | Leite | imipenem, meropenem | 20 | OXA (100%), IMP (15%) | 20 (100%) | 20 (100%) | in vitro (CB, TK) | IMI: 0%; MER: 0% | IMI: 4 (20%); MER: 0% | IMI: 16 (80%); MER: 100% | 0% | - | - | - | [83] | |
1996, Spain | Martinez-Martinez | imipenem | 34 | - | 34 (100%) | NA (at least 7) | in vitro (CB) | 1 (3%) | - | - | 0% | - | - | The Authors reported only the number of isolates on which the combination had a synergistic or an antagonistic effect. | [132] | |
S. aureus | 2019, Spain | Coronado-Álvarez | imipenem | 4 | MRSA (50%) | - | - | in vitro (TK) | 4 (100%) | 0% | 0% | 0% | - | - | - | [63] |
2015, Spain | del Río | imipenem | 10 (in vitro); 2 (in vivo) | MRSA (100%) | 1 (10%) | 4 (40%) | in vitro (TB); in vivo (rabbit, endocarditis) | in vitro: 9 (90%); in vivo: 2 (100%) | in vitro: 1 (10%) | 0% | 0% | - | - | % of sterile vegetations: FOS alone 0%, IMI alone 7%, FOS + IMI 73%. | [28] | |
2013, Austria | Lingscheid | doripenem | 39 | MRSA (100%) | 0% | - | in vitro (CB, TK) | 37 (94%) | - | - | 0% | - | - | The authors reported FICI ranging from 0.5 to 4, without distinction between additive and indifferent effect. | [139] | |
2012, Spain | Garrigós | imipenem | 1 | MRSA (100%) | 0% | 0% | in vitro (TK); in vivo (rat, foreign-body infection) | 0% | in vitro: 1 (100%) | in vitro: 0%; in vivo: 1 (100%) | 0% | - | - | - | [37] | |
2011, Spain | Pachón-Ibáñez | imipenem | 1 | GISA (100%) | 0% | 100% | in vitro (TK); in vivo (mouse, peritonitis) | in vitro: 1 (100%); in vivo: 1 (100%) | 0% | 0% | 0% | - | - | FOS + IMI reached statistical difference when compared to IMI as single therapy in the mouse model. | [36] | |
2003, Japan | Nakazawa | imipenem, panipenem | 32 | MRSA (100%) | 29 (91%) | 28 (88%) | in vitro (efficacy time index) | IMI: 16 (50%); PAN: 21 (66%) | IMI: 3 (9%); PAN: 8 (25%) | IMI: 13 (41%); PAN: 3 (9%) | 0% | - | - | - | [18] | |
1987, France | Quentin | imipenem | 5 | - | 1 (20%) | 1 (20%) | in vitro (TK) | 1 (20%) | 0% | 3 (60%) | 1 (20%) | - | - | - | [35] | |
S. aureus + S. epidermidis | 2001, Austria | Grif | meropenem | 5 S. aureus + 2 S. epidermidis | MRSA (25%), GISA (25%) | - | - | in vitro (CB, TK) | S. aureus: 5 (100%) | 0% | S. epidermidis: 2 (100%) | 0% | - | - | - | [43] |
1992, Austria | Guggenbichler | imipenem | 1 S. aureus + 2 S. epidermidis | - | - | - | in vitro (TK) | 3 (100%) | 0% | 0% | 0% | - | - | The study was conducted on catheters infected in laboratory. Bacterial regrowth was observed in catheters treated with FOS or IMI alone, but did not occurred when the drugs were tested in combination. | [153] | |
Staphylococcus spp. + Enterococcus spp. | 1986, Italy | Debbia | imipenem | 76 | - | - | - | in vitro (CB, TK) | 54 (71%) | 0% | 22 (29%) | 0% | - | - | % reported are those obtained with CB. Results of TK showed higher rates of synergism, but in the present Table are considered the results of CB as not all isolates were tested with TK. | [154] |
E. faecalis | 2011, Italy | Farina | imipenem | 27 | - | 2 (7%) | 0% | in vitro (ET) | 0% | 0% | 10 (37%) | 17 (62%) | - | - | The Authors did not distinguish between additive and indifferent effect, and defined the effect of FOS + IMI indifferent. | [128] |
S. pneumoniae | 1994, France | Doit | imipenem | 26 | - | 0% | 0% | in vitro (TK) | 0% | 26 (100%) | 0% | 0% | - | - | - | [134] |
N. gonorrhoeae | 2015, The Netherlands | Wind | ertapenem | 4 | - | - | - | in vitro (ET) | 0% | 3 (75%) | 1 (25%) | 0% | - | - | - | [54] |
Strain | Year and Country | Author | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Aztreonam-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Aztreonam Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Avery | 48 | 48 not specified between: 8 E. coli: KPC (25%), NDM (75%), ESBL (62%); 35 Klebsiella spp: KPC (45%), NDM (40%); OXA (14%), VIM (8.%), ESBL (88%), fosA (44%); 2 Citrobacter spp: KPC (50%), NDM (50%), ESBL (50%), 4 E. cloacae: KPC (75%), NDM (25%), ESBL (75%) | 20 (40%) | 48 (100%) | in vitro (ET) | 4 (8%) | 13 (27%) | 31 (64%) | 0% | 0% | 0% | Data on synergism reported without distinction for bacterial strains. % of FOS-R isolates estimated on the basis of the reported MIC50. | [11] |
2019, USA | Flamm | 20 | - | - | - | in vitro (CB, TK) | 5 (25%) | 5 (25%) | 1 (5%) | 0% | - | - | For 9 isolates the efficacy of FOS + ATM remained indeterminate. | [38] | |
E. coli | 2014, Sweden | Hickam | 2 | ESBL, OXA (50%) | 0% | 1 (50%) | in vitro (CB, TK) | 2 (100%) | 0% | 0% | 0% | - | - | - | [120] |
K. pneumoniae | 2014, Sweden | Hickam | 1 | ESBL, OXA (100%) | 0% | 1 (100%) | in vitro (CB, TK) | 0% | 1 (100%) | 0% | 0% | - | - | - | [120] |
P. aeruginosa | 2019, USA | Avery | 103 | - | NA (at least 71) | 103 (100%) | in vitro (ET) | 16 (15.5%) | 68 (66%) | 19 (18%) | 0% | - | 21 (13%) | - | [33] |
2019, USA | Flamm | 5 | - | - | - | in vitro (ET) | 1 (20%) | 3 (60%) | 0% | 0% | - | - | For 1 isolate the efficacy of FOS + ATM remained indeterminate. | [38] | |
2002, Japan | Okazaki | 30 | - | 15 (50%) | 29 (96%) | in vitro (efficacy time index) | 23 (76.%) | 3 (10%) | 4 (13%) | 0% | 4 (26%) | 6 (20%) | - | [39] |
Strain | Year and Country | Author | Quinolone | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Quinolone-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Quinolone Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Flamm | Levofloxacin | 20 | 7 MDR (of which 29% ESBL and 29% KPC-producer) | - | - | in vitro (CB) | 30% | 60% | 10% | 0% | - | - | - | [38] |
E. coli | 2020, Egypt | El-Wafa | Ciprofloxacin | 8 | - | 100% | 100% | in vitro (CB, TK) | 3 (37%) | - | - | - | 3 (100%) | 3 (100%) | Triple combination (FOS/IMP/CIP o FOS/CIP/TOB) increased synergism against all isolates. | [42] |
2019, USA | Wang | Ciprofloxacin | 8 | - | 25% | 25% | in vitro (ET, biofilm) | 2 (25%) | - | 6 (75%) | - | 0% | 0% | - | [155] | |
2019, India | Sugathan | Ciprofloxacin | 50 | biofilm producers (100%) | 0% | 98% | in vitro (CB, TK) | 3 (6%) | 20 (40%) | 27 (54%) | 0% | - | 0% | The optimal combination of fosfomycin with N-acetylcystein produces the reduction of E. coli sessile cell viability and biofilm formation up to 60–73%. | [137] | |
S. flexneri | 2019, China | Liu | Ciprofloxacin | 80 | - | 43 (54%) | 100% | in vitro (CB, TK); in vivo (Galleria mellonella) | 31 (38%) | 0% | 49 (61)% | 0% | 65 (81%) | 3 (4%) | - | [156] |
P. aeruginosa | 2019, USA | Wang | Ciprofloxacin | 7 | - | 0% | 14% | in vitro (ET, biofilm) | 4 (57%) | - | 3 (42%) | - | - | 0% | - | [155] |
2019, USA | Flamm | Levofloxacin | 5 | 7 MDR (of which 29% ESBL and 29% KPC-producer) | - | - | in vitro (CB) | 1 (20%) | 4 (80%) | 0% | - | - | - | [38] | ||
2016, Australia | Walsh | Ciprofloxacin | 4 | - | 75% | 50% | in vitro (TK) | 21% (23/108) | 15% (16/108) | 38% (41/108) | - | - | - | The total number of experiments was 108 (9 combinations of FOS + CIP at different concentrations, in 3 different times). | [76] | |
2013, Brazil | Dos Santos | Ciprofloxacin | 2 | MDR (50%) | 100% | 50% | in vitro (CB, TK) | 2 (100%) | - | - | - | 2 (100%) | 0% | - | [48] | |
2007, Japan | Mikuniya | Prulifloxacin, ciprofloxacin, levofloxacin | 1 | biofilm forming (100%) | - | - | in vivo (rat, UTI) | 1 (100%) | - | - | - | - | - | *After 3 consecutive days’ co-administration. | [40] | |
2007, Japan | Yamada | Ciprofloxacin | 74 | - | - | - | in vitro (CB) | 20 (27%) | - | 54 (73%) | 0% | - | - | - | [157] | |
2005, Japan | Micuniya | Ciprofloxacin, Ulifloxacin, Levofloxacin | 1 | - | 100% | 100% | in vitro (ATP bioluminescence assay) | - | 100% | - | - | 0% | 0% | - | [46] | |
2002, Japan | Monden | Ofloxacin | 4 | - | 3 (75%) | 1 (25%) | in vitro (biofilm) | 3 (75%) | - | - | - | - | - | - | [158] | |
2001, Japan | Okazaki | Levofloxacin | 30 | MDR (50%) | 13/30 (43%) | 21/30 (70%) | in vitro (Efficacy time index) | 3/30 (1%) | 17/30 (56%) | - | 10/30 (33)% | - | - | ETI < 0.5 antagonism; 0.5 ≤ ETI <1 indifferent; 1 ≤ ETI < 8 additive; ETI ≥ 8 synergistic | [39] | |
1999, Japan | Hayami | Ciprofloxacin | 26 | - | - | - | in vitro (CB, TK) | 10(38%) | 15 (57%) | 1 (3%) | 0% | - | - | - | [130] | |
1997, France | Bugnon | Pefloxacin | 2 | - | - | - | in vivo (rabbit, endocarditis) | - | - | - | 100% | - | - | - | [41] | |
1997, France | Tessier | Ciprofloxacin | 40 | MDR (100%) | 23 (57%) | 19 (47%) | in vitro (CB) | 6 (15%) | 32 (80%) | 2 (5%) | - | 16 (70%) | 12 (63%) | - | [131] | |
1995, Japan | Kumon | Ofloxacin | 1 | - | - | - | in vitro (TK) | 1 (100%) | - | - | - | - | - | - | [159] | |
1994, France | Xiong | Ciprofloxacin | 2 | MDR (50%) | 0% | 50% | in vitro (CB); in vivo (rabbit, endocarditis) | 2 (100%) early thp; 1 (50%) Late thp | 0% early thp; 1 (50%) Late thp | - | - | - | - | in vivo results. | [160] | |
1994, France | Xiong | Pefloxacin | 2 | MDR (50%) | 0% | 50% | in vitro (CB); in vivo (rabbit, endocarditis) | 1 (50%) early thp; 1 (50%) late thp | 1 (50%) early thp | 1 (50%) late thp | - | - | - | in vivo results. | [160] | |
1989, Germany | Vogt | Ciprofloxacin | 25 | - | 1 (4%) | 2 (8%) | in vitro (TK) | 20% | - | - | - | - | - | - | [161] | |
1988, USA | Figueredo | Ciprofloxacin | - | - | - | - | in vitro (CB) | 60% (EV) 17% (OS) | - | - | 0% | - | - | - | [162] | |
1987, Germany | Ullmann | Ciprofloxacin | 37 | - | - | - | in vitro (CB) | 29 (78%) | 8 (22%) | 0% | 0% | 100% | - | - | [45] | |
A. baumannii | 1996, Spain | Martinez-Martinez | Ciprofloxacin | 34 | - | 100% | 100% | in vitro (CB) | 1 (3%) | - | - | 0% | - | - | - | [132] |
A. baumannii-A. calcoaceticus spp. complex | 2019, USA | Flamm | Levofloxacin | 5 | 7 MDR (29% ESBL and 29% KPC-producer) | - | - | in vitro (CB) | 0% | 4 (80%) | 1 (20%) | 0% | - | - | - | [38] |
Gram negative | 1977, Spain | Daza | Nalidixic acid | 100 | - | 100% | - | in vitro (CB) | 0% | - | 100% | 0% | - | - | Klebsiella spp., Pseudomonas spp., E. coli, Serratia spp., Proteus spp., Enterobacter spp., Acinetobacter spp., Levinea spp. | [66] |
Staphylococcus spp. | 2003, Japan | Nakazawa | Ofloxacin | 32 | MRSA (100%) | - | - | in vitro (efficacy time index) | 3 (9%) | 2 (6%) | 27 (84%) | - | - | - | synergism = high efficacy; additive = efficacy; indifferent = invalid | [18] |
2001, Austria | Grif | Moxifloxacin | 7 | MRSA (100%) | - | - | in vitro (CB) | 100% | - | - | - | - | - | - | [43] | |
1997, Italy | Ferrara | Sparfloxacin | 16 | MRSA (100%) | >50% | ∼100% | in vitro (TK) | 0% | - | - | - | - | - | - | [123] | |
1988, France | Thauvin | Pefloxacin | 1 | MRSA (100%) | in vivo (rat, endocarditis) | 100% | - | - | - | - | - | - | [44] | |||
1987, France | Weber | Ofloxacin | 8 | MRSA (37%) | - | - | in vitro (TK) | 2 (25%) | 6 (75%) | - | - | - | - | - | [163] | |
1987, Germany | Ullmann | Ciprofloxacin | 20 | - | - | - | in vitro (CB) | 19 (95%) | 1 (5%) | - | - | - | - | S. aureus. | [45] | |
1987, France | Quentin | Pefloxacin | 6 | - | 16% | 0% | in vitro (TK) | 0% | 0% | 100% | 0% | - | - | S. aureus. Indifferent effect. | [35] | |
S.epidermidis | 1997, Italy | Ferrara | Sparfloxacin | 12 | MRSE (100%) | >50% | ∼100% | in vitro (TK) | 6/12 (50%) | - | - | - | - | - | - | [123] |
1987, France | Quentin | Pefloxacin | 2 | - | 50% | - | in vitro (TK) | 0% | 0% | 100% | 0% | - | - | Indifferent effect. | [35] | |
N. gonorrhoeae | 2014, Netherlands | Wind | Moxifloxacin | 4 | - | - | - | in vitro (ET) | 0% | - | - | - | - | - | - | [54] |
Strain | Year and Country | Author | Aminoglycoside | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Aminoglycoside-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Aminoglycoside Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Avery | Tobramycin | 45 | 45 not specified between: 8 E. coli: KPC (25%), NDM (75%), ESBL (62%); 35 Klebsiella spp: KPC (45%), NDM (40%); OXA (14%), VIM (8%), ESBL (88%), fosA (44%); 2 Citrobacter spp: KPC (50%), NDM (50%), ESBL (50%), 4 E. cloacae: KPC (75%), NDM (25%), ESBL (75%) | 20/49 (40%) | 45 (100%) | in vitro (ET) | 2 (4%) | 7 (15%) | 36 (80%) | 0% | - | - | Data on synergism reported without distinction for bacterial strains. Percentages of FOS-R isolates estimated on the basis of the reported MIC50. | [11] |
2019, USA | Flamm | Gentamicin | 20 | - | - | - | in vitro (CB, TK) | 6 (30%) | 13 (65%) | 1 (5%) | 0% | - | - | - | [38] | |
1978, Spain | Olay | Streptomycin, gentamicin, kanamycin | Streptomycin: 18 E. coli. Gentamicin: 30 E. coli, 24 Klebsiella spp., 39 S. marcescens, 33 Proteus spp. Kanamycin: 21 E. coli, 12 Klebsiella spp., 16 Proteus spp., 5 E. cloacae, 22 S. marcescens | - | - | - | in vitro (CB) | streptomycin: 0%; gentamicin: 16 (12%); kanamycin: 21 (27%) | streptomycin: 9 (50%); gentamicin: 52 (41%); kanamycin: 37 (48%) | streptomycin: 9 (50%); gentamicin: 58 (46%); kanamycin: 18 (23%) | 0% | - | - | - | [14] | |
E. coli | 2020, Egypt | El-Wafa | tobramycin | 8 | - | 3 (37.5%) | 8 (100%) | in vitro (CB, TK) | 2 (25%) | 0% | 0% | 0% | 2 (66%) | 2 (25%) | For 6 isolates the efficacy of FOS + TOB remained indeterminate. | [42] |
2019, USA | Wang | Gentamicin | 8 | - | 0% | 2/8 (25%) | in vitro (ET, biofilm) | 75% (6/8) | 0% | (2/8) 25% | 0% | - | 1/2 50% | - | [155] | |
2019, India | Sugathan | Amikacin | 50 | - | 0% | 26 (52%) | in vitro (TK) | 29 (58%) | 21 (42%) | 0% | 0% | 0% (all S) | 22 (84%) | The Authors also studied the efficacy of combination of FOS + AMK and found it reduced significantly biofilm formation. | [137] | |
2013, Switzerland | Corvec | Gentamicin | 1 | CTX-M15, ESBL | 0% | 0% | in vitro (TK); in vivo (foreign-body infection model) | 0% | 100% | 0% | 0% | - | - | Cure rate of FOS plus gentamicin 42%. | [73] | |
2011, Greece | Samonis | Netilmicin | 20 | ESBL | 0% | 35% | in vitro (ET) | 25% (5/20) | - | - | - | - | - | - | [86] | |
1977, Poland | Borowski | Streptomycin | 10 | - | - | - | in vitro (CB) | 7 (70%) | 3 (30%) | 0% | 0% | - | - | - | [121] | |
K. pneumoniae | 2020, Turkey | Erturk Sengel | Amikacin | 17 | OXA-48, NDM | 41% | 76% | in vitro (CB) | 29% | 29% | 24% | 0% | - | - | Combination of FOS plus amikacin seems not a good choice for NDM producing strains. | [142] |
2018, China | Yu | Amikacin | 3 | - | 0% | - | in vitro (TK) | 100% (3/3) | 0% | 0% | 0% | - | - | - | [164] | |
2017, China | Yu | Amikacin | 3 | KPC-2 | 0% | 33% | in vitro (TK) | 66% | 0% | 33% | 0% | - | - | FOS (8 g q8h)/AMK (15 mg/kg qd) most bactericidal activity, but resistance occurred. | [50] | |
2017, China | Yu | Amikacin | 136 | KPC (100%) | 78 (57%) | 80 (58%) | in vitro (CB, TK) | 7 (5%) | 109 (80%) | 20 (14%) | 0% | - | - | - | [89] | |
2015, Spain | Rodriguez-Avial et al. | Plazomicin | 4 (CB); 2 (TK) | Carbapenemase-producing strains (KPC, VIM) | 100% | NA | in vitro (CB, TK) | 25–100% | 50–0% | 25–0% | 0% | - | - | - | [51] | |
2014, USA | Montgomery | Amikacyn | 20 | KPC-2 (20%), KPC-3 (15%) | - | 100% | in vitro (agar diluition, antibiotic potentation study in A:F 5:2 ratio) | 100% | - | - | 0% | - | - | Synergy defined: reduction of FOS and AMK MIC when used in combination. | [52] | |
2011, Greece | Samonis | Netilmicin | 65 | serine carbapenem-producing (50/65); ESBL (14/65); MBL (1/65) | 98% | 87% | in vitro (ET) | 41% (27/65) overall. In ESBL 42% (6/14). In serine enzymes 42% (21/50) | - | - | - | - | 54% (25/46) | - | [86] | |
2011, Greece | Souli | gentamicin | 17 | KPC (100%) | 4 (23%) | 7 (41%) | in vitro (TK) | 0% | 0% | 15/15 (100%) | - | - | - | Efficacy of FOS + GEN was not evaluated in 2 isolates. | [53] | |
1977, Spain | Daza | Tobramicin | 23 | - | - | - | in vitro (CB) | 2/23 (8%) | - | - | 0% | - | - | - | [66] | |
M. morganii | 1977, Spain | Daza | Gentamicin | 2 | - | - | - | in vitro (CB) | 50% (1/2) | - | - | 0% | - | - | - | [66] |
P. aeruginosa | 2019, USA | Wang | Gentamicin | 7 | - | 25% | 1/7 (14%) | in vitro (ET, biofilm) | 4 (57%) | 0% | 3 (42%) | 0% | - | 0% | - | [155] |
2019, USA | Avery | tobramycin | 42 | - | NA (at least 71) | 42 (27%) | in vitro (ET) | 8 (19%) | 13 (31%) | 21 (50%) | 0% | - | 8 (19%) | - | [33] | |
2019, New Zealand | Li Bassi | Amikacin | 15 | Strains resistant to nebulized fosfomycin and amikacin (100%) | - | - | in vivo (pigs, pneumonia) | 0% | 0% | 100% | 0% | - | - | No difference in P. aeruginosa lung tissue concentration, bronchoalveolar lavage concentration and lung hystopathology score when amikacin and FOS were administered by aerosol alone or in combination therapy. | [165] | |
2019, USA | Flamm | gentamicin, amikacin | 5 | - | - | - | in vitro (CB, TK) | 0% | genta: 4 (80%); amika: 4 (80%) | genta: 1 (20%); amika: 1 (20%) | 0% | - | - | - | [38] | |
2018, Spain | Diez-Aguilar | Tobramycin | 6 | - | 100% | 67% | in vitro (CB) | 83% | 17% | 0% | 0% | - | - | Synergy tested in biofilm. | [166] | |
2015, Australia | Walsh | Tobramycin | 3 | - | 1/4 (25%) | in vitro (TK) | 18% (15/81) | 25% (20/81) | - | - | - | - | - | [76] | ||
2015, Spain | Diez-Aguilar | Tobramycin | 8 | mexZ mutation (25%), ANT(2’)-I enzyme (37.5%), | 100% | 37% | in vitro (TK) | 25% | 0% | 75% | 0% | - | - | - | [166] | |
2014, USA | Montgomery | Amikacin | 21 | GES-1, OXA-2 plus OXA-10 plus VIM-2, OXA 14, VIM-4 (each, 4.8%), VIM-2 (19%) | - | 100% | in vitro (agar dilution, antibiotic potentation study in A:F 5:2 ratio) | 100% | - | - | - | - | - | Synergy defined: reduction of FOS and AMK MIC when used in combination. | [52] | |
2013, Brazil | Ferrari dos Santos Lima | Tobramycin | 2 | IMP-R (100%) | 100% | 100% | in vitro (broth microdilution, CB) | 100% | 0% | 0% | 0% | 100% | 0% | Authors do NOT report FOS and AMG MIC (they referred to CLSI criteria except for FOS-Eucast S ≤ 32 µg/mL); FOS MIC restoration 32. | [48] | |
2013, USA | Anderson | Tobramycin | 1 | - | - | - | in vitro (effects on biofilms on CF airway epithelial cells) | - | 100% | 0% | 0% | - | - | FOS:TOBRA (4:1) formulas for inhalation treatment; results suggest that fosfomicon enhanced the activity of tobramycin (much less level of tobramycin needed). FOS alone does NOT result in biofilm inhibition, TOBRA alone require HIGHER doses for biofilm inhibition. | [49] | |
2012, UK/USA | McCaughey | Tobramycin | 15 | - | - | - | in vitro (agar dilution, TK) | 100% | - | - | 0% | - | - | Synergism defined as FOS:TOBRA bactericidal activity; Time kill studies in a subset of isolates; biofilm studies were also performed. | [167] | |
2011, Greece | Samonis | Netilmicin | 15 | MDR | 93% | 13% | in vitro (ET) | 13% (2/15) | - | - | - | - | - | - | [86] | |
2009, China | Cai | Amikacin | 20 | - | - | NA (MIC90 32) | in vitro (CB); in vivo (rat, biofilm-infected model) | 80% | 15% | - | 0% | - | MIC90 decrease of 64-fold | F + T (lowest FICI amikacina and isepamicina) had synergistic effect on planctonic P. aeruginosa. | [168] | |
2009, China | Cai | Gentamicin | 20 | - | - | NA (MIC90 16) | in vitro (CB); in vivo (rat, biofilm-infected model) | 70% | 15% | - | 0% | - | MIC90 decrease of 8-fold | F + T (lowest FICI amikacina and isepamicina) had synergistic effect on planctonic P. aeruginosa. | [168] | |
2009, China | Cai | Netilmicin | 20 | - | - | NA (MIC90 16) | in vitro (CB); in vivo (rat, biofilm-infected model) | 65% | 20% | - | 0% | - | MIC90 decrease of 8-fold | F + T (lowest FICI amikacina and isepamicina) had synergistic effect on planctonic P. aeruginosa. | [168] | |
2009, China | Cai | Tobramycin | 20 | - | - | NA (MIC90 8) | in vitro (CB); in vivo (rat, biofilm-infected model) | 60% | 20% | - | 0% | - | MIC90 decrease of 2-fold | F + T (lowest FICI amikacina and isepamicina) had synergistic effect on planctonic P. aeruginosa. | [168] | |
2005, Thailand | Pruekprasert | gentamicin | 22 | - | - | - | in vitro (CB) | 1 (4%) | 9 (42%) | 6 (27%) | 6 (27%) | - | - | - | [22] | |
2002, Japan | Okazaki | gentamicin | 30 | - | 15 (50%) | 19 (63%) | in vitro (efficacy time index) | 0% | 9 (30%) | 21 (70%) | 0% | 0% | 15 (50%) | - | [39] | |
1999, Japan | Hayami | amikacin | 26 | - | NA (at least 13) | NA (< 5) | in vitro (CB, TK) | 0% | 10 (38%) | 16 (61%) | 0% | - | - | - | [130] | |
1991, Nigeria | Chinwuba | Gentamicin | 8 | - | - | 0% | in vitro (CB, TK) | 0% | 0% | 100% | 0% | - | - | - | [169] | |
1997, France | Tessier | amikacin | 40 | - | 23 (57%) | 13 (32%) | in vitro (CB) | 3 (7%) | 21 (52%) | 16 (40%) | 0% | 18 (78%) | 11 (84%) | Although the combination had a synergistic effect on no tested strains, it is of clinical relevance as it restored FOS and AMK susceptibility in many resistant strains. | [131] | |
1978, Spain | Olay | gentamicin, kanamycin | 77 gentamicin, 15 kanamycin | - | - | - | in vitro (CB) | gentamicin: 55 (71%); kanamycin: 4 (26%) | gentamicin: 17 (22%); kanamycin: 8 (53%) | gentamicin: 5 (6%); kanamycin: 3 (20%) | 0% | - | - | - | [14] | |
A. baumannii | 2019, USA | Flamm | gentamicin, amikacin | 5 (A. baumannii-calcoaceticus species complex) | - | - | - | in vitro (CB, TK) | genta: 2 (40%); amika: 2 (40%) | genta: 3 (60%); amika: 3 (60%) | 0% | 0% | - | - | - | [38] |
2016, Brazil | Leite | gentamicin, amikacin | 20 | OXA (100%), IMP (15%) | 20 (100%) | genta: 11 (55%); amika: 19 (95%) | in vitro (CB, TK) | 0% | genta: 2 (10%); amika: 0% | genta: 18 (90%); amika: 20 (100%) | 0% | - | - | "2-well" method showed synergistic activity in about 20% of tested strain, but the Authors considered it not fully reliable and concluded the association had an indifferent effect. | [83] | |
2014, USA | Montgomery | Amikacyn | 21 | OXA-23 plus OXA-51 (23.8%); OXA-24 plus OXA-51 (9.5%), OXA-51, OXA-51 plus OXA-58 (each, 4.8%) | - | 100% | in vitro (agar dilution, antibiotic potentation study in A:F 5:2 ratio) | 100% | - | - | 0% | - | - | Synergism defined as reduction of FOS and AMK MIC when used in combination. | [52] | |
1996, Spain | Martinez-Martinez | amikacin, tobramycin | 34 | - | 34 (100%) | amika: 31 (91%); tobra: 33 (97.%) | in vitro (CB) | amika: 15 (44%); tobra: 11 (32%) | - | - | 0% | - | - | The authors reported only synergistic and antagonistic effect rates. | [132] | |
Gram-negative | 1977, Spain | Daza | Tobramycin | 75 | - | - | - | in vitro (CB) | 0% | 0% | 100% | 0% | - | - | 33 Klebsiella spp., 21 P. aeruginosa, 3 P. cepacia, 12 E.coli,11 S. marcescens, 9 Enterobacter spp., 8 Proteus spp., 2 A. calcoaceticus, 1 L. malonatica, 5 K. pneumoniae oxytoca, 5 K. Ozenae, 5 E. aerogenes, 2 E. hafniae, 1 E. cloacae, 1 E. liquefaciens, 4 P. mirabilis, 2 P. rettgeri | [66] |
1977, Spain | Daza | Gentamicin | 75 | - | - | - | in vitro (CB) | 0% | 0% | 100% | 0% | - | - | [66] | ||
S. aureus | 2017, Spain | Lopez Diaz | Plazomicin | 12 (BC); 5 (TK) | MRSA Strains carrying aminoglycosides-modifying enzymes (100%) | 56% | - | in vitro (CB, TK) | 33.3–0% | 66–100% | 0% | 0% | - | - | - | [170] |
2012, UK/USA | McCaughey | Tobramycin | 5 | MRSA | 100% | - | in vitro (agar dilution, TK) | 60% | - | - | 0% | - | - | Synergism defined as F:T bactericidal activity; Time kill studies in a subset of isolates; biofilm studies were also performed | [167] | |
2005, Japan | Morikawa | Arbekacin | 1 | MRSA | 100% | 100% MIC 0.5 (no available breakpoint) | in vivo (rat, carboxymethyl cellulose pouch infection model) | 100% | - | - | - | - | - | NOT available arbikacin EUCAST breakpoints; Synergistic effect was evaluated by i) morphological and histological studies showing dramatic change in biofilm and inflammatory response and by ii) decrease in the number of viable bacteria in vivo. | [171] | |
1994, Japan | Kono | Arbekacin | 96 | MRSA | 38% | - | in vitro | 66% (60/90) | - | - | 0% | - | - | Better results of FOS-arbekacin combination in FOS susceptible strains. | [172] | |
1987, Spain | Rodriguez | Gentamicin | 1 | MRSA | 0% | 0% | in vivo (endocarditis in 10 rabbits) | 100% (1/1) 0% n. of rabbits’ death (0/10) | 0% | 0% | 0% | - | - | - | [61] | |
1985, USA | Alvarez | Gentamicin | 148 | MRSA | - | - | in vitro (microtiter technique in a 1:1 ratio) | (10/148) 7% | 0% | 90% (134/148) | (4/148) 3% | - | - | Synergy was indicated if the MICs of both drugs decreased by at least one-fourth. If the MIC of one drug owed a fourfold or greater increase, it was assumed to be an indication of antagonism. | [12] | |
1978, Spain | Olay | streptomycin, gentamicin, kanamycin | 18 streptomycin, 29 gentamicin, 21 kanamycin | - | - | - | in vitro (CB) | streptomycin: 1 (5%); gentamicin: 0%; kanamycin: 9 (43%) | streptomycin: 10 (55%); gentamicin: 3 (10%); kanamycin: 7 (33%) | streptomycin: 7 (38%); gentamicin: 26 (89%); kanamycin: 5 (23%) | 0% | - | - | - | [14] | |
Streptococcus spp. | 1978, Spain | Olay | streptomycin | 16 | - | - | - | in vitro (CB) | 0% | 9 (56%) | 7 (43%) | 0% | - | - | - | [14] |
E. faecium | 2019, Thailand | Hemapanpairoa | Gentamicin | 8 | VRE (100%) | 100% | 13% | in vitro (ET for FOS, broth microdilution for gentamicin) | 63% | 13% | 25% | 0% | 63% | - | Synergistic activity assessed as a fourfold reduction of MIC when FOS combined with gentamicin 1 mcg/mL. | [55] |
N. gonorrhoeae | 2015, The Netherlands | Wind | gentamicin | 4 | - | - | - | in vitro (ET) | 0% | 1 (25%) | 3 (75%) | 0% | - | - | - | [54] |
Miscellaneous | 2009, USA | MacLeod | Tobramycin | 27 (4 S. aureus, 17 P. aeruginosa, 5 E.coli, 1 H. influenzae) | - | - | - | in vitro (CB, TK); in vivo (rat, pneumonia) | 7% (1 P. aeruginosa, 1 E.coli) | - | 93% | 0% | - | - | In vitro (agar plate dilution, broth microdilution, CB ON a SUBSET of ISOLATES, TK) and in vivo (rat bacterial pneumonia). NB: CB for 27 total strains: 4 S. aureus, 17 P. aeruginosa, 5 E. coli, 1 H. influenzae. FOS:TOBRA 4:1 was rapidly bactericidal and exhibited concentration -bactericidal killing in TK, with excellent activity against S. aureus and H. influenzae, but poor activity against S. maltophilia, B. cepacia; it was active against M. catarrhalis, E. coli, Klebsiella and S. pneumoniae. | [173] |
Strain | Year and Country | Author | Macrolide | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Macrolide-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Macrolide Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli | 1978, Spain | Olay | Erythromycin | 14 | - | - | - | in vitro (CB) | 42% | 29% | 28% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] |
Klebsiella spp. | 1978, Spain | Olay | Erythromycin | 44 | - | - | - | in vitro (CB) | 50% | 23% | 27% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] |
E. cloacae | 1978, Spain | Olay | Erythromycin | 16 | - | - | - | in vitro (CB) | 62% | 38% | 0% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] |
Proteus spp. (Indole +) | 1978, Spain | Olay | Erythromycin | 13 | - | - | - | in vitro (CB) | 53% | 46% | 0% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] |
P. aeruginosa | 1982, Japan | Kasai | Midecamycin | 2 | - | 0% | 2 (100%) | in vitro (TK)/in vivo (Mice, peritonitis or subcutaneous infection) | 0% | 2 (100%) | 0% | 0% | - | - | In all in vivo experiment survival rates of mice that received MDM + FOS was statistically significant higher then when FOS or MDM were administrated alone, proving synergistic effect. | [59] |
1978, Spain | Olay | Erythromycin | 29 | - | - | - | in vitro (CB) | 38% | 59% | 3% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] | |
S. aureus | 1978, Spain | Olay | Erythromycin | 34 | - | - | - | in vitro (CB) | 26% | 68% | 6% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] |
S. epidermidis | 2009, Austria | Presterl | Azithromycin | 11 | - | 2 (18%) | 5 (45%) | in vitro (Microtitre plate assay on Biofilm culture) | - | - | - | - | - | - | Combination of azithromycin with any of the tested antimicrobial agents did not reduce the biofilm ODr compared to the ODr of biofilms treated with single agents | [58] |
S. pseudointermedius | 2014, Canada | DiCicco | Clarithromycin | 8 | MRSP (100%) | 5 (62%) | 8 (100%) | in vitro (Microtitre plate assay) | 5 (62%) | 2 (25%) | 0% | 0% | - | - | FICI for 1 strains was reported as "Not available". | [60] |
Streptococcus spp. | 1978, Spain | Olay | Erythromycin | 26 | - | - | - | in vitro (CB) | 15% | 27% | 57% | 0% | - | - | Authors considered Synergistic effect when MIC of both antimicrobials was at least fourfold lower over initial MIC; partial synergy when MIC of one antimicrobials was at least fourfold lower and MIC of the other one 2 times lower over initial MIC; Indifferent effect when MIC of both antimicrobials was 2 times lower; antagonism when MIC of both increased 4 times over initial MIC. | [14] |
N. gonorrhoeae | 2015, Switzerland | Hauser | Azithromycin | 8 (4 TK) | AZT-HLR (12,%) | 0% | 1 (12%) | in vitro (CB, TK) | CK: 0%; TK: 0% | CK: 0%; TK: 0% | CK: 8 (100%); TK: 4 (100%) | CK: 0%; TK: 0% | - | - | Only 4 strains were tested with TKA. Authors used Enterobacterales FOS breakpoint as presumptive breakpoint for N. gonorrhoeae (EUCAST: S ≤ 32 mg/L; CLSI: S ≤ 64 mg/L). | [57] |
2015, Netherlands | Wind | Azithromycin | 4 | Azithromycin and Ceftriaxone Resistant (100%) | - | - | in vitro (ET) | 0% | 0% | 4 (100%) | - | - | - | - | [54] |
Strain | Year and Country | Author | Glycopeptide | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Glycpeptide-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Glycopeptide Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A baumannii | 2016, Brazil | Leite | Vancomycin | 20 | OXA-23 (50%), OXA-143 (35%), IMP-type (15%), depletion of OMP 43 kDa (20%) | 19 (95%) | Natural resistance | in vitro (CB, TK) | 0% | 0% | CB: 20 (100%) | 0% | 0% | Breakpoints not available | TK showed indifference in all strains. | [83] |
S. aureus | 2018, China | Xu | Vancomycin | 3 | - | 1 (33%) | 0% | in vitro (CB) | 0% | 2 (66%) | 1 (33%) | 0% | 1 (100%) | No resistant isolates | In vitro concentrations - VAN (0.5, 1, 2 mg/L); FOS (32, 64 mg/L). | [174] |
2017, Spain | Coronado-Alvarez | Vancomycin | 4 | Methicillin resistance (50%) | - | - | in vitro (TK) | 0% | 4 (100%) | 0% | 0% | - | - | The study also evaluated 15 patients with bacteremia caused by MRSA were treated with FOS in combination with VAN. Of these, 7 patients (46.7%) had negative blood cultures after 48 h of combination therapy. | [63] | |
2012, Taiwan | Tang | Vancomycin, teicoplanin | 8 | Methicillin resistance (100%) | 2 (6%) | VAN: 0%; TEC: 0% | in vitro (TK) | VAN: 8 (100%) | 0% | TEC: 8 (100%) | 0% | 0% | No resistant isolates | Synergistic concentrations were 64 mg/L for FOS and 2 mg/L for VAN, at 24 h. Indifference was detected with 8 mg/L for TEC at 24 h. Significant reduction of colony count in biofilm model when FOS was in combination with either VAN and TEC after 5 days. | [69] | |
2011, Taiwan | Tang | Vancomycin | 5 | Methicillin resistance (100%) | 0% | 0% | in vitro (TK) | 5 (100%) | 0% | 0% | 0% | No resistant isolates | No resistant isolates | All strains had borderline MIC values for VAN (2 mg/L). In vitro synergistic concentrations were 2 mg/L for VAN and 64 mg/L for FOS. | [175] | |
2010, Spain | Pachon-Ibanez | Vancomycin | 1 | hGISA (100%) | 0% | 0% | in vitro (TK); in vivo (mouse, peritonitis) | 1 (100%) | 0% | 0% | 0% | No resistant isolate | No resistant isolate | Resistant (4 mg/L) sub-population frequency: 3.6 × 10−6 CFU/mL; in vitro synergistic concentrations were 1–2–4 mg/L for FOS and 1–2 mg/L for VAN at 24 h. In vivo combination was significant and effective in reducing bacteremia rates in 57% (n = 8 out of 14) of mice treated. | [36] | |
2005, Italy | Pistella | Vancomycin, teicoplanin | 7 | Methicillin resistance (100%) | 5 (71%) | VAN: 3 (42%); TEC: 6 (85.7%) | in vitro (TK) | VAN: 7 (100%); TEC: 0% | VAN: 0%; TEC: 7 (100%) | 0% | 0% | 7 (100%) | 0% | Synergistic concentrations were 8 mg/L for FOS and 1 × MIC for VAN (1, 2 or 4 mg/L respectively) at 24 h. | [176] | |
1987, Spain | Rodriguez | Vancomycin | 1 | Methicillin resistance (100%) | 0% | 0% | in vitro (TK); in vivo (rabbit, endocarditis) | 1 (100%) | 0% | 0% | 0% | No resistant isolates | No resistant isolates | In vitro synergism at 24 and 48 h. Fixed concentrations of FOS at 8 mg/L and VAN at 1 mg/L. In vivo combination was successful in 10 rabbits (100%) showing sterile vegetations. | [61] | |
1985, Spain | Alvarez | Vancomycin | 148 | Methicillin resistance (100%) | 15 (10%) | 1 (1%) | in vitro (CB) | 0% | 0% | 145 (98%) | 3 (2%) | - | - | 1 strain was resistant to VAN (MIC > 32 mg/L). | [12] | |
S. aureus, S. epidermidis | 2014, China | Shi | Vancomycin | 3 (2 S. aureus, 1 S. epidermidis) | Methicillin resistance (67%) | 3 (100%) | 0% | in vitro (TK); in vivo (biofilm in rats’ tissues) | 3 (100%) | 0% | 0% | 0% | 0% | No resistant isolates | In vitro synergistic concentrations at 1 mg/L for VAN and 64 mg/L for FOS at 6h and 24 h. In vivo significative reduction of biofilm formation in rats’ tissues (4, 100%). | [62] |
2001, Austria | Grif | Vancomycin | 7 (5 S. aureus; 2 S. epidermidis) | S. aureus: GISA 1 (20%), MRSA 1 (20%) | - | 0% | in vitro (CB, TK) | 0% | 0% | CB: S. epidermidis 2 (100%); S. aureus 5 (71%) | CB: S. epidermidis 0%; S. aureus 2 (28%) | - | - | TK showed indifference for all strains, with fixed concentration of FOS at 40 mg/L and VAN at 10 mg/L. | [43] | |
1989, Germany | Gatermann | Vancomycin | 33 (15 S. aureus; 18 S. epidermidis) | - | - | - | in vitro (CB) | S. aureus: 1 (6%); S. epidermidis: 1 (5%) | S. aureus: 8 (53%); S. epidermidis: 7 (39%) | S. aureus: 6 (40%); S. epidermidis: 9 (50%) | S. aureus: 0%; S. epidermidis: 1 (5%) | - | - | Synergistic concentrations not specified. | [177] | |
E. faecalis, E. faecium, S. aureus, S. epidermidis, CONS | 1986, Italy | Debbia | Teicoplanin | 76 strains: 30 E. faecalis, 6 E. faecium, 20 S. aureus, 10 S. epidermidis, 10 CoNS | Methicillin resistance (50% of S. aureus) | - | - | in vitro (CB, TK) | CB: 20 (67%) E. faecalis; 4 (67%) E. faecium; 6 (60%) S. aureus; 6 (60%) MRSA; 1 (10%) S. epidermidis; 6 (60%) CONS | CB: 10 (33%) E. faecalis; 2 (33%) E. faecium; 4 (40%) S. aureus; 4 (40%) MRSA; 9 (90%) S. epidermidis; 4 (40%) CONS | 0% | 0% | - | - | Synergistic concentrations not specified. 46 strains were tested also by TK. TK results-Synergism: 11 (92%) E. faecalis; 4 (100%) E. faecium; 6 (100%) S. aureus; 8 (100%) MRSA; 6 (75%) S. epidermidis; 8 (100%) CoNS. Additive effect: 1 (8%) E. faecalis; 2 (25%) S. epidermidis. | [178] |
S. pneumoniae | 2006, Spain | Ribes | Vancomycin | 2 | Resistance to penicillin (50%) and ceftriaxone (100%) | 0% | 0% | in vitro (TK); in vivo (rabbit, menigitis) | 1 (50%) | 1 (50%) | 0% | 0% | No resistant isolates | No resistant isolates | In vitro synergism at 24 h, at concentrations achievable in CSF. In vivo combination significant and effective in eradicating meningitis with sterile blood cultures (8, 100%). | [24] |
1994, France | Doit | Vancomycin | 26 | Isolates not susceptible to penicillin (100%) | 0% | 0% | in vitro (TK) | 0% | 0% | 100% | 0% | No resistant isolates | No resistant isolates | Fixed concentrations of FOS at 40 mg/L and VAN at 3 mg/L. | [134] | |
S. epidermidis | 1990, France | Gaillanrd | Vancomycin | 1 | - | 0% | 0% | in vitro (TK) | 1 (100%) | 0% | 0% | 0% | No resistant isolates | No resistant isolates | Synergism at 4 h. Fixed concentrations of FOS at 12.5 mg/L and VAN at 7.5 mg/L. Effective to reduce biofilm formation (1; 100%). | [179] |
1990, Germany | Simon | Vancomycin, teicoplanin | 20 | Methicillin resistant (100%) | 10 (50%) | VAN: 0%; TEC: 2 (10%) | in vitro (CB) | VAN: 4 (20%); TEC: 9 (45%) | VAN: 5 (25%); TEC: 6 (30%) | VAN: 11 (55%); TEC: 5 (25%) | VAN: 0%; TEC: 0% | - | VAN: no resistant isolates; TEC: NS | Synergistic concentrations at 0.5 X MIC for FOS, TEC and VAN. Good efficacy in artificial biofilm model when isolates were fully susceptible to FOS. | [180] | |
E. faecalis - E. faecium | 2013, Taiwan | Tang | Vancomycin, teicoplanin | 19 strains: 9 E. faecalis; 10 E. faecium | Vancomycin resistant (100%) | 5 (55%) E. faecalis; 7 (70%) E. faecium | VAN: 19 (100%) both; TEC: 1 (11%) E. faecalis; 6 (60%) E. faecium | in vitro (TK) | VAN: 3 (33%) E. faecalis, 3 (30%) E. faecium; TEC: 8 (89%) E. faecalis, 3 (30%) E. faecium | 0% | VAN: 6 (67%) E. faecalis, 7 (70%) E. faecium; TEC: 1 (11%) E. faecalis, 7 (70%) E. faecium | 0% | 0% | VAN: 3 (33%) E. faecalis; 3 (30%) E. faecium; TEC: 0% | Synergistic concentrations were 64 mg/L for FOS, 4 mg/L for VAN and 8 mg/L for TEC, at 24 h. FOS-TEC had synergistic effect against biofilm-producing E. faecalis (4; 44%) and one E. faecium (1; 10%) isolates. FOS-VAN had synergistic effect against only one biofilm-producing E. faecalis isolate (1; 11%). | [13] |
Strain | Year and Country | Author | Tetracycline | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Tetracycline-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Tetracycline Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Flamm | Minocycline | 20 | 7/30 MDR strains (A. baumannii, Enterobacterales e P. aeruginosa) included 2 ESBL e 2 KPC Enterobacterales | - | - | in vitro (CB) | 4 (20%) | 13 (65%) | 1 (5%) | 0% | - | - | Authors considered Partial Sinergy when FICI was between 0.5–1 and Additive effect for FICI = 1. Results for 2/20 strains (10%) were indeterminate. | [38] |
1977, Spain | Daza | Tetracycline | 100 | - | 100 (100%) | - | in vitro (CB) | 2 (2%) | - | 98% | 0% | - | - | Authors considered Synergistic effect when MIC was at least fourfold lower over initial MIC. | [66] | |
P. aeruginosa | 2019, USA | Flamm | Minocycline | 5 | 7/30 MDR strains (A. baumannii, Enterobacterales e P. aeruginosa) | - | - | in vitro (CB) | 2 (40%) | 3 (60%) | 0% | 0% | - | - | Authors considered Partial Sinergy when FICI was between 0.5–1 and Additive effect for FICI = 1. | [38] |
A. baumannii | 2013, China | Zhang | Minocycline | 25 | Pan-Drug-Resistant (100%) | 100% | See Comments | in vitro (CB) | 12% | 56% | 32% | 0% | 0% | 100% | Mean MIC for Minocycline was 16, MIC range 4-16. Authors used CLSI breakpoint for MIN (S ≤ 4 mg/L). | [65] |
S. aureus | 2012, Taiwan | Tang | Minocycline | 33 (8 TK) | MRSA (100%) | 6% | 61% | in vitro (TK, Biofilm MTT-staining method) | - | - | - | - | - | - | Only 8 strains were tested with TK. Biofilm cultures were 94% MIN resistant and 94% FOS resistant. Cases of synergism were observed with FOS+MIN combination. Percentages or other data were not reported by authors. Combination of FOS + MIN determined a statistically significant reduction on ODRs in biofilm cultures compared to single drugs. | [69] |
2011, China | Sun | Minocycline | 87 | MRSA (100%) | 35 (40%) | 13 (14%) | in vitro (CB) | 76 (87%) | - | 11 (12%) | 0% | 100% | 92% | Authors considered Indifferent effect for FICI between 0,5 and 4. CLSI breakpoint was used for MIN (S ≤ 4 mg/L) and E. faecalis FOS breakpoint as presumptive breakpoint for MRSA (S ≤ 64 mg/L). | [70] | |
2003, Japan | Nakazawa | Minocycline | 32 | MRSA (100%) | 29 (91%) | 26 (81%) | in vitro (Efficacy Time Index) | 10 (31%) | 1 (3%) | 21 (65%) | - | - | - | - | [18] | |
E. faecalis | 2013, Taiwan | Tang | Minocycline | 9 | VRE (100%) | 56% | 89% | in vitro (TK, Biofilm Model) | TKA: 2 (22%); BM: 1 (11%) | - | - | - | - | - | Additive, Indifferent and antagonistic effect were not evaluated. | [13] |
E. faecium | 2013, Taiwan | Tang | Minocycline | 10 | VRE (100%) | 70% | 80% | in vitro (TK, Biofilm Model) | TKA: 4 (40%); BM: 1 (10%) | - | - | - | - | - | Additive, Indifferent and antagonistic effect were not evaluated. | [13] |
2012, USA | Descourouez | Minocycline | 32 | VRE (100%) | 9% | See Comments | in vitro (TK) | 0% | 0% | 100% | 0% | - | - | The authors considered MIC ≤ 64 mg/L as FOS breakpoint. Most of strains were minocycline resistant (MIC range 4–32, mean MIC 16 mg/L). | [67] | |
2019, USA | Davis | Doxycycline | 24 | VRE (100%) | 96% | 8% | in vitro (ET, TK) | CK: 11 (46%); TK: 10 (41%) | CK: 13 (54%); TK: 4 (16%) | CK: 0%; TK: 10 (41%) | CK: 0%; TK 0% | - | - | Authors used CLSI breakpoint for DOX (S ≤ 4 mg/L) and E. faecalis FOS breakpoint as presumptive breakpoint for E. faecium (S ≤ 64 mg/L). | [68] | |
N. gonorrhoeae | 2015, Netherlands | Wind | Minocycline | 4 | Azithromycin and Ceftriaxone Resistant (100%) | - | - | in vitro (ET) | 0% | 0% | 4 (100%) | - | - | - | - | [54] |
Strain | Year and Country | Author | Polymyxin | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Polymyxin-ResIstant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Polymyxin Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Flamm | Colistin | 20 | carbapenem-resistant (5%), KPC (10%), ESBL (10%) | - | - | in vitro (CB, TK) | 1 (5%) | 5 (25%) | 8 (40%) | 0% | - | - | For 6 isolates the effect of the combination was indeterminate. | [38] |
2015, UK | Albur | Colistin | 6 | NDM-1 (100%) | 3 (50%) | 0% | in vitro (TK) | 3 (50%) | 0% | 3 (50%) | 0% | - | - | The combination was synergistic against FOS-S isolates. Against FOS-R isolates, an additive effect was observed after 12h, but then regrowth occurred. | [181] | |
E. coli | 2013, Switzerland | Corvec | Colistin | 1 | CTX-M15, ESBL (100%) | 0% | 0% | in vitro (TK), in vivo (foreign-body infection model) | 1 (100%) | 0% | 0% | 0% | - | - | - | [73] |
2011, France | Berçot | Colistin | 1 | NDM-1 | 0% | 0% | in vitro (CB, TK) | 0% | 1 (100%) | 0% | 0% | - | - | E. coli J53 | [85] | |
2011, Greece | Samonis | Colistin | 20 | ESBL (100%) | 0% | 0% | in vitro (ET) | 3 (15%) | - | - | 0% | - | - | - | [86] | |
E. cloacae | 2011, France | Berçot | Colistin | 2 | NMD-1 | 1 (50%) | 0% | in vitro (CB, TK) | 0% | 2 (100%) | 0% | 0% | - | - | - | [85] |
K. pneumoniae | 2020, Turkey | Buket Erturk Sengel | Colistin | 17 | KPC (OXA-48, NDM) (100%) | 41% | 65% | in vitro (CB, TK) | 7 (41%) | 3 (18%) | 5 (29%) | 2 (12%) | - | - | - | [142] |
2019, India | Bakthavatchalam | Colistin | 50 | CR-Kp, NDM, OXA-43 (100%) | 24 (48%) | 14 (30%) | in vitro (TK) | 8 (16%) | 0% | 42 (84%) | 0% | - | - | - | [141] | |
2020, Sweden | Wistrand-Yuen | Polymyxin B | 5 (4 used for FOS+PMB) | KPC-2, KPC-3, NMD-1, OXA-48, VIM-1 (100%) | 3 (60%) | 2 (40%) | in vitro (TK) | 5 (31%) | 2 (12%) | - | - | - | - | Synergistic rate inferred from 4 isolates monitored at different times. If evaluated only after 24 h, syn: 40%; add 20%. | [182] | |
2019, France | Crémieux | Colistin | 1 | carbapenem-resistant (100%) | 0% | 0% | in vitro (TK); in vivo (rabbit, osteomyelitis) | 1 (100%) | 0% | 0% | 0% | - | - | - | [71] | |
2018, China | Wang | Colistin | 4 | carbapenem-resistant (100%) | 2 (50%) | 0% (75% heteroresistant) | in vitro (TK) | 31 (43%) | 8 (11%) | 33 (46%) | 0% | - | - | 3 isolates showed heteroresistance: the total number of experiments was 72 (3 different colistin concentrations tested in 6 different times). | [183] | |
2018, China | Yu | Colistin | 3 | KPC (100%) | 1 (33%) | 3 (100%) | in vitro (TK) | 2 (66%) | 1 (33%) | 0% | 0% | - | - | - | [164] | |
2017, Taiwan | Ku | Colistin | 9 | ESBL-producing KP (5/9 carbapenem-R, 4/9 carbapenem-S) | 4 (45%) | 1 (11%) | in vitro (TK) | 5 (55%) | 0% | 4 (45%) | 0% | - | - | - | [84] | |
2017, China | Yu | Colistin | 3 | KPC2 (100%) | 0% | 1 (33%) | in vitro (TK) | 3 (100%) | 0% | 0% | 0% | - | - | - | [50] | |
2017, China | Yu | Colistin | 136 | KPC-Kp (100%) | 78 (57%) | 1 (1%) | in vitro (CB, TK) | 5 (3%) | 109 (80%) | 22 (16%) | 0% | - | - | - | [89] | |
2018, USA | Bulman | Polymyxin B | 2 | KPC-2 (100%) | 0% | 0% | in vitro (TK); in vivo (hollow-fibre infection model) | 2 (100%) | - | - | - | - | - | - | [75] | |
2014, Sweden | Tängdeén | Colistin | 4 | VIM (50%), NDM (50%) | 2 (50%) | 0% | in vitro (TK) | 3 (75%) | 0% | 1 (25%) | 0% | - | - | Synergism in 1 VIM- and 2 NDM-producing isolates, although NDM-producing isolates were FOS-R. | [146] | |
2013, Turkey | Evren | Colistin | 12 | OXA-48 (100%) | 11 (92%) | 2 (17%) | in vitro (CB) | 0% | 0% | 0% | 12 (100%) | - | - | - | [74] | |
2011, France | Berçot | Colistin | 3 | NDM-1 (100%) | 0% | 0% | in vitro (CB, TK) | 0% | 1 (33%) | 2 (66%) | 0% | - | - | - | [85] | |
2011, Greece | Samonis | Colistin | 50 | carbapenem-resistant (100%) | 3% | 25% | in vitro (ET) | 18 (36%) | - | - | 0% | - | - | - | [86] | |
2011, Greece | Samonis | Colistin | 14 | ESBL (100%) | 3% | 25% | in vitro (ET) | 1 (7%) | - | - | 0% | - | - | - | [86] | |
2011, Greece | Souli | Colistin | 17 | KPC-2 (100%) | 4 (23%) | 7 (41%) | in vitro (TK) | 2 (12%) | 0% | 15 (88%) | 0% | - | - | - | [53] | |
K. oxytoca | 2011, France | Berçot | Colistin | 1 | NDM-1 | 0% | 0% | in vitro (CB, TK) | 0% | 100% | 0% | 0% | - | - | - | [85] |
P. rettgeri | 2011, France | Berçot | Colistin | 1 | NDM-1 | 0% | 100% | in vitro (CB, TK) | 0% | 0% | 100% | 0% | - | - | - | [85] |
P. aeruginosa | 2019, USA | Flamm | Colistin | 5 | - | - | - | in vitro (CB, TK) | 0% | 1 (20%) | 4 (80%) | 0% | - | - | - | [38] |
2016, Australia | Walsh | Polymyxin B | 4 | MDR (75%) | 50% | 50% | in vitro (TK) | 19 (18%) | 27 (25%) | - | - | - | - | FOS in combination with polymyxin B increased bacterial killing, but did not suppress emergence of FOS resistance. The total number of experiments was 108 (9 combinations of FOS + CIP at different concentrations, in 3 different times). | [76] | |
2011, Greece | Samonis | Colistin | 15 | MDR (100%) | 6% | 0% | in vitro (ET) | 2 (13%) | - | - | 0% | - | - | - | [86] | |
2015, China | Di | Colistin | 87 | CRPA (100%) | 75% | 4% (5/87) | in vitro (CB, TK) | 19 (21%) | 29 (33)% | 39 (44%) | 0% | - | 3 (60%) | - | [184] | |
A. baumannii-A. calcoaceticus spp. Complex | 2019, USA | Flamm | Colistin | 5 | MDR (20%) | - | - | in vitro (CB, TK) | 2 (40%) | 1 (20%) | 1 (20%) | 0% | - | - | For 1 isolate the effect of the combination was indeterminate. | [38] |
A. baumannii | 2020, South Korea | Su Ku | Colistin | 1 | OXA-23 (100%) | 100% | 0% | in vitro (TK); in vivo (mouse, nasal inoculation) | 1 (100%) | 0% | 0% | 0% | - | - | - | [72] |
2019, Turkey | Sertcelik | Colistin | 23 | carbapenem-resistant (100%) | 100% | 26% | in vitro (CB) | 1 (4%) | 10 (43%) | 12 (52%) | 0% | - | - | - | [185] | |
2019, China | Bian | Colistin | 9 | carbapenem-resistant (100%) | - | 0% | in vitro (CB, TK) | 1 (11%) | - | - | - | - | - | - | [186] | |
2018, China | Zhu | Colistin | 21 | - | 100% | 61% (13/21) | in vitro (CB) | 0% | 2 (9%) | 19 (90%) | 0% | - | - | The authors reported 8 isolates to be colistin-R, but only 3 isolates had MIC > 2. | [151] | |
2018, Thailand | Leelasupasri | Colistin | 15 | carbapenem-resistant (100%) | 100% | 0% | in vitro (CB, ET) | 4 (26%) | 7 (46%) | 4 (26%) | 0% | - | - | - | [187] | |
2017, Thailand | Lertsrisatit | Colistin | 17 | CoR-AB; carbapenemase-producing; efflux-pump (100%) | 100% | 100% | in vitro (CB, ET) | - | - | - | 0% | - | - | Treatment in vivo (patients) with COL + FOS lead to death (2/2). | [188] | |
2016, China | Fan | Colistin | 12 | XDR (100%) | 100% | 0% | in vivo (mouse, thigh-infection)model | 1 (8%) | - | - | 0% | - | - | - | [189] | |
2016, Brazil | Leite | Colistin | 20 | OXA-23, OXA-143 (100%) | 100% | 35% (7/20) | in vitro (CB, TK, 2-well) | 0% | - | - | - | - | - | - | [83] | |
2015, China | Wei | Colistin | 50 | XDR (100%) | 94% | 50% | in vitro (CB) | 25 (50%) | 0% | 22 (44%) | 3 (6%) | Synergism (FICI: =< 0.5). Indifference (FICI: 0.5–4). Antagonism (FICI: >= 4). | [190] | |||
2013, China | Zhang | Polymyxin B | 25 | PDR (100%) | 100% | 100% | in vitro (TK) | 4 (16%) | 11 (44%) | 10 (40%) | 0% | 0% | 25 (100%) | - | [65] | |
2011, Thailand | Santimaleeworagun | Colistin | 8 | carbapenem-resistant (100%) | 0% | - | in vitro (CB, TK) | 13% | - | - | - | - | - | - | [99] | |
N. gonorrhoeae | 2014, Netherlands | Wind | Colistin | 4 | - | - | - | in vitro (ET) | 0% | - | - | - | - | - | - | [54] |
Strains | Year and Country | Author | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Daptomycin-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Daptomycin Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | 2019, Taiwan | Lee | 100 | MRSA (100%) | 15 (15%) | 0% | in vitro (CB) | 37 (37%) | 44 (44%) | 19 (19%) | 0% | - | - | All isolates had MIC daptomycin = 1 (previously selected among 1353 isolates). | [191] |
2019, Spain | Coronado-Alvarez | 4 | MRSA (50%) | - | - | in vitro (TK) | 4 (100%) | 0% | 0% | 0% | - | - | The authors also performed a retrospective review of 75 patients with severe Gram-positive infections and found that DAP + FOS (30) was the most effective combination. | [63] | |
2018, Spain | Garcìa-de-la-Mària | 5 (in vitro); 1 (in vivo) | MRSA (100%) | 0% | 0% | in vitro (TK), in vivo (rabbit, endocarditis) | in vitro: 5 (100%); in vivo: 1 (100%) | 0% | 0% | 0% | - | - | - | [79] | |
2017, Turkey | Aktas | 25 | MRSA (100%) | 11 (44%) | 0% | in vitro (CB) | 25 (100%) | 0% | 0% | 0% | - | - | - | [80] | |
2015, Austria | Lingscheid | 1 | MRSA (100%) | 0% | 0% | in vivo (rats, implant-associated osteomyelitis) | 1 (100%) | 0% | 0% | 0% | - | - | - | [81] | |
2013, Spain | Garrigós | 1 | MRSA (100%) | 0% | 0% | in vitro (TK), in vivo (rat, foreign-body infection) | in vitro: 0%; in vivo: 1 (100%) | 0% | in vitro: 1 (100%) | 0% | - | - | - | [37] | |
2012, Spain | Miró | 14 | MRSA (35%); GISA (14%) | 0% | 1 (7%) | in vitro (TK) | 11 (79%) | 3 (21%) | 0% | 0% | - | - | The combination was bactericidal against 8 (57%) isolates. The authors also reported the case reports of 3 patients with S. aureus (1 MSSA, 2 MRSA) endocarditis successfully treated with high-dose DAP (10/kg/day) + FOS. | [192] | |
2011, Austria | Poeppl | 1 | MRSA (100%) | 0% | 0% | in vivo (rats, osteomyelitis) | 0% | 0% | 1 (100%) | 0% | - | - | FOS and FOS + DAP were significantly superior to placebo and to DAP alone. FOS + DAP was not more effective than FOS alone. | [193] | |
E. faecalis | 2019, China | Zheng | 4 (TK) + 4 (biofilm assay) | - | 1 (12%) | 2 (25%) | in vitro (TK, biofilm assay) | TK: 4 (100%). Biofilm assay: 3 (75%) | 0% | TK: 0%. Biofilm assay: 1 (25%) | 0% | - | - | TK performed on 4 linezolid-R isolates. Biofilm assay performed on 4 linezolid-S isolates. DAP + FOS demonstrated significantly more anti-biofilm activities then DAP or FOS alone. | [194] |
1992, USA | Rice | 1 | - | 0 | 1 (100%) | in vitro (TK), in vivo (rats, endocarditis) | in vitro: 1 (100%) | in vitro: 0%; in vivo: 1 (100%) | 0% | 0% | - | in vitro: 1 (100%) | The isolate was highly R to gentamicin. DAP + FOS sterilized more valves (59% VS 35%) than DAP alone. Despite this, the combination in vivo was considered "additive" because it was not possible to demonstrate a statistically significant superiority in comparison with DAP alone. | [82] | |
1989, USA | Rice | 21 | - | 0 | 0 | in vitro (TK) | 21 (100%) | 0% | 0% | 0% | - | - | All isolates were highly R to gentamicin. The bactericidal effect of DAP alone was not increased by the addition of FOS. | [195] | |
E. faecium | 2013, USA | Descourouez | 4 | VRE (100%) | 0% | 0% | in vitro (TK) | 4 (100%) | 0% | 0% | 0% [196] | - | - | The combination resulted strongly bactericidal. | [67] |
Staphylococcus spp., Enterococcus spp. | 1988, Italy | Debbia | 50 | - | - | in vitro (CB, TK) | CB: 80%TK: 95% | 0% | CB: 20%TK: 5% | 0% | - | - | A total of 50 strains was tested with CB, and only 20 strains were tested with TK. | [197] |
Strain | Year and Country | Author | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Tigecycline-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Tigecycline Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacterales | 2019, USA | Flamm | 20 | 7/30 MDR strains (A. baumannii, Enterobacterales e P. aeruginosa) included 2 ESBL e 2 KPC Enterobacterales | - | - | in vitro (CB) | 5 (25%) | 10 (50%) | 5 (25%) | 0% | - | - | Authors considered Partial Sinergy when FICI was between 0.5–1 and Additive effect for FICI = 1. | [38] |
2017, Taiwan | Ku | 9 | ESBL KP producing (100%) | 4 (44,4%) | 4 (44%) | in vitro (TK) | 6 (66%) | 0% | 3 (33%) | 0% | - | - | - | [84] | |
2011, France | Berçot | 9 | NDM-1 KPC (100%) | 2 (22%) | 3 (33%) | in vitro (CB) | 0% | - | 9 (100%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. | [85] | |
E. coli | 2013, Switzerland | Corvec | 1 | Bj HDE-1 (100%) (ESBL and Ciprofloxacin resistant) | 0% | 0% | in vitro (TK); in vivo (Guinea pigs, cage infection) | TK: 0%; in vivo: 0% | TK: 100%; in vivo: 0% | TK: 0%; in vivo: 100% | 0% | - | - | - | [73] |
2011, Greece | Samonis | 20 | ESBL (100%) | 0% | 1 (5%) | in vitro (ET) | 5 (25%) | - | 15 (75%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials | [86] | |
K. pneumoniae | 2019, China | Huang | 30 | KPC (100%) | 19 (63%) | 11 (36%) | in vitro (ET, CB) | ET: 5 (16%); CK: 4 (13%) | ET: 9 (30%); CK: 11 (36%) | ETt: 16 (53%); CK: 15 (50%) | 0% | ET: 14/19 (73%); CK: 6/15 (40%) | ET: 5/11 (45%); CK: 7/13 (53,%) | ET and CB showed different rates of FOS and TIG resistance and different rates of susceptibility restoration; otherwise the 2 methods had similar resulted in establishing synergistic, additive or indifferent effect. | [88] |
2019, Greece | Papoutsaki | 11 | KPC (100%) | 35% | 96% | in vitro (ET, TK) | ET: 16/33 (48%); TKA: 1/22 (4%) | ET: 17/33 (51%); TKA: 21/22 (95%) | 0% | 0% | - | - | ET was performed three times with different methods: a) Etest/Agar method; b) Cross formation method; c) MIC/MIC ratio method. TK was performed two times: a) TIG 1,3 mg/L + FOS 0,5xMIC and b) TIG 1,3 mg/L + FOS 30 mg/L. | [87] | |
2017, China | Yu | 136 | KPC (100%) | 78 (57%) | 25 (18%) | in vitro (CB, TK) | CK: 2 (1%); TKA: 0% | CK: 113 (83%); TKA: 3 (75%) | CK: 19 (14%); TKA: 1 (25%) | CK: 2 (1%); TKA: 0% | - | - | Only 4 strains were tested with TK. | [89] | |
2013, Turkey | Evren | 12 | OXA-48 (100%) | 11 (92%) | 5 (41%) | in vitro (CB) | 4 (33%) | 6 (50%) | 2 (16%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials | [74] | |
2011, Greece | Samonis | 65 | Serine-KPC (77%) - MBL (1%) - ESBL (21%) | 1 (1%) | 10 (15%) | in vitro (ET) | 18 (27%) | - | 47 (72%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials | [86] | |
P. aeruginosa | 2011, Greece | Samonis | 15 | MDR (100%) | 1 (6%) | 15 (100%) | in vitro (ET) | 2 (13%) | - | 13 (86%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials | [86] |
A. baumannii | 2019, USA | Flamm | 5 | 7/30 MDR strains (A. baumannii, Enterobacterales e P. aeruginosa) | - | - | in vitro (CB) | 0% | 4 (80%) | 1 (20%) | 0% | - | - | Authors considered Partial Sinergy when FICI was between 0.5–1 and Additive effect for FICI = 1. | [38] |
2016, Netherlands | Leite | 20 | Colistin-Resistant (65%) | 20 (100%) | 5% | in vitro (CB, 2-Well Method) | 0% | - | - | - | - | - | Any synergistic effect was reported. Additive, Indifferent and antagonistic effect were not evaluated. | [83] | |
S. aureus | 2018, Italy | Simonetti | 15 | MRSA (100%) | 0 | 0% | in vitro (CB); in vivo (mice, wound infection) | 12 (80%) | - | 3 (20%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. | [90] |
2012, Taiwan | Tang | 33 (8 TK) | MRSA (100%) | 6% | 0% | in vitro (TK, Biofilm MTT-staining method) | 0% | - | 100% | 0% | - | - | Only 8 strains were tested with Time–kill Assay. Biofilm cultures were 100% TIG resistant and 94% FOS resistant. No FICI were reported by authors, no synergistic effect was seen on any strains. | [69] | |
E. faecalis | 2018, Italy | Simonetti | 15 | - | 0% | 0% | in vitro (CB); in vivo (mice, wound infection) | 12 (80%) | - | 3 (20%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. In vivo experiment: bacterial count using FOS + TIG combination was reduced ≥ 2 log over single antimicrobials. | [90] |
2013, Taiwan | Tang | 9 | VRE (100%) | 56% | 0% | in vitro (TK, Biofilm Model) | TKA: 3 (33%); BM: 5 (56%) | - | - | - | - | - | Additive, Indifferent and antagonistic effect were not evaluated. | [13] | |
E. faecium | 2019, Thailand | Hemapampairoa | 12 | VRE (100%) | 12 (100%) | 3 (25%) | in vitro (CB) | 1 (8%) | 9 (75%) | 2 (16)% | 0% | - | - | - | [55] |
2018, Italy | Simonetti | 15 | - | 0% | 0% | in vitro (CB) | 10 (66)% | - | 5 (33%) | 0% | - | - | Authors considered Indifferent effect for FICI between 0.5 and 4. | [90] | |
2013, Taiwan | Tang | 10 | VRE (100%) | 70% | 0% | in vitro (TK, Biofilm Model) | TKA: 3 (30%); BM: 1 (10%) | - | - | - | - | - | Additive, Indifferent and antagonistic effect were not evaluated. | [13] | |
N. gonorrhoeae | 2015, Netherlands | Wind | 4 | Azithromycin and Ceftriaxone Resistant (100%) | - | - | in vitro (ET) | 0% | 0% | 4 (100%) | - | - | - | - | [54] |
Strain | Year and Country | Author | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Linezolid-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Linezolid Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | 2018, China | Chen | 11 (3 TK) | MRSA (50%) | 0% | 0% | in vitro (CB, TK) | CK: 8 (72%); TK: 3 (100%) | CK: 3 (27%); TK: 0% | CK: 0%; TK: 0% | CK: 0%; TK: 0% | - | - | Only 3 strains were tested with TK. For the same 3 strains, the authors also evaluated. Post-Antibiotic Effect (PAE) of LZD alone and in combination with FOS. PAE of LZD + FOS seemed to be increased with the increase in time of exposure, even if no statistically significant difference was found. | [198] |
2018, Spain | Coronado-Alvarez | 2 | MRSA (100%) | - | - | in vitro (TK) | 2 (100%) | 0% | 0% | 0% | - | - | Synergy was defined as a reduction > 3 log CFU/mL over antimicrobial agent alone, additive effect was defined as areduction < 3 log CFU/mL. Synergistic effect was demonstrated only when 4 x MIC LZD + 2 x MIC FOS were used; 1 × MIC LZD + 2 × MIF FOS regimen showed Additive effect. | [63] | |
2016, China | Chai | 3 (1 TK) | MRSA (100%) | 2 (66%) | 0% | in vitro (CB, TK) | CK: 3 (100%); TK: 1 (100%) | CK: 0%; TK: 0% | CK: 0%; TK: 0% | CK: 0%; TK: 0% | - | - | Only 1 strain was tested with Time–kill Assay. The authors also evaluated in vitro and in vivo efficacy of LIN + FOS on MRSA biofilm (all 3 strains), demonstrating a synergistic effect only in vitro when using 1/2 MIC LZD + 1/2 MIC FOS and not with lower concentrations. | [94] | |
2014, China | Xu-Hong | 102 | MRSA (100%) | **MIC range 16-128 mg/L | 0% | in vitro (CB) | 100 (98%) | - | 2 (2%) | 0% | 100% | 100% | The authors considered Indifferent effect for FICI between 0.5 and 4. Fosfomycin MIC range in combination was 2-32 mg/L, LZD MIC in combination was 0,125–1 mg/L. | [199] | |
2012, Taiwan | Tang | 33 (8 TK) | MRSA (100%) | 6% | 0% | in vitro (TK, Biofilm MTT-staining method) | - | - | - | - | - | - | Only 8 strains were tested with Time–kill Assay. Biofilm cultures were 100% LZD resistant and 94% FOS resistant. Combination of FOS + LZD determined a statistically significant reduction on ODRs in biofilm cultures. | [69] | |
2010, Spain | Pachón-Ibáñez | 1 | GISA 100% (Gentamicin Intermediate S. aureus) | - | - | in vitro (TK); in vivo (Murine peritonitis model) | 1 (100%) | 0% | 0% | 0% | - | - | In vivo experiment on mice showed a higher rate of blood culture negativization when using FOS + LZD therapy (57%) then using FOS or LZD alone (43% and 27% respectively). | [36] | |
2006, Spain | Sahuquillo Arce | 5 (4 TK) | - | 0% | 0% | in vitro (CB, TK) | CK: 4 (80%); TK: 4 (100%) | CK: 1 (20%); TK: 0% | CK: 0%; TK: 0% | CK: 0%; TK: 0% | - | - | Synergistic effect at CB was confirmed with TK on 4 strains. | [200] | |
2001, Austria | Grif | 5 (1 TK) | MRSA (60%) | 0% | 0% | in vitro (CB, TK, TEM) | CK: 5 (100%); TK: 0% | - | CK: 0%; TK: (1) 100% | CK: 0%; TK: 0% | - | - | The authors did not consider additive effect. They also performed Transmission Electron Microscopy, demonstrating profound morphological alteration of 2 strains when using FOS + LZD, which were not seen using FOS or LZD alone. | [43] | |
2018, China | Li | 4 | MRSA (50%) | 0% | 0% | in vitro (CB, TK); in vivo (Galleria melonella Survival Assay) | CK: 4 (100%); TK: 4 (100%) | CK: 0%; TK: 0% | CK: 0%; TK: 0% | CK: 0%; TK: 0% | - | - | TKA showed synergism, but bacteriostatic effect. In vivo experiment showed statistically significant higher efficacy of high-dose LZD + FOS combination, then high dose of FOS or LZD alone, but low-dose combination had no significant differences with monotherapy orhigh-dose combination. | [95] | |
S. epidermidis | 2001, Austria | Grif | 2 | - | 0% | 0% | in vitro (CB) | 2 (100%) | - | 0% | 0% | - | - | The authors did not consider additive effect. They also performed Transmission Electron Microscopy, demonstrating profound morphological alteration of 2 strains when using FOS + LZD, which were not seen using FOS or LZD alone. | [43] |
E. faecalis | 2013, Taiwan | Tang | 9 | VRE (100%) | 56% | 0% | in vitro (TK, Biofilm Model) | TKA: 0%; BM: 0% | - | - | - | - | - | The authors did not consider additive, indifferent or antagonistic effect. | [13] |
2019, China | Qi | 2 | VRE (50%) | 2 (100%) | 0% | in vitro (CB, TK, TEM) | CK: 0%; TK: 0%) | CK: 2 (100%); TK: 1 (50%) | CK: 0%; TK: 1 (50%) | CK: 0%; TK: 0% | 2 (100%) | 2 (100%) | Transmission Electron Microscopy, demonstrated more morphological alterations when using FOS + LZD, then using FOS or LZD alone. | [201] | |
E. faecium | 2019, Thailand | Hemapampairoa | 12 | VRE (100%) | 12 (100%) | 0% | in vitro (CB) | 3 (25%) | 9 (75%) | 0% | 0% | - | - | - | [55] |
2013, Taiwan | Tang | 10 | VRE (100%) | 70% | 80% | in vitro (TK, Biofilm Model) | TKA: 1 (10%); BM: 0% | - | - | - | - | - | The authors did not consider additive, indifferent or antagonistic effect. | [13] | |
2012, USA | Descourouez | 32 | VRE (100%) | 9% | 3% | in vitro (TK) | See comments | See comments | 0% | 0% | - | - | The authors considered MIC ≤ 64 mg/L as FOS breakpoint. FOS combined with LZD was either synergistic or additive yet bacteriostatic. Percentages of strains on which there was synergistic effect were not reported | [67] | |
2019, China | Qi | 4 | VRE (75%) | 4 (100%) | 1 (25%) | in vitro (CB, TK, TEM); in vivo (Galleria Melonella Survival Assay) | CK: 2 (50%); TK: 2 (50%) | CK: 1 (25%); TK: 1 (25%) | CK: 1 (25%); TK: 1 (25%) | 0% | 3 (75%) | 4 (100%) | Transmission Electron Microscopy, demonstrated more morphological alterations when using FOS + LZD, then using FOS or LZD alone. In vivo experiment showed higher survival rates of larvae when using FOS + LZD then LZD alone, but similar rates using FOS alone. | [201] |
Strain | Year and Country | Author | Number of Isolates | Known Resistance Mechanisms or Determinants (%) | FOS-Resistant (%) | Rifampin-Resistant (%) | In Vitro (Methods)/In Vivo (Animal and Site of Infection) | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | FOS Susceptibility Restoration (%) | Rifampin Susceptibility Restoration (%) | Comments | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli | 1978, Spain | Olay | 17 | - | - | - | in vitro (CB); in vivo (mouse, peritonitis) | 1 (5,9%) | 9 (52,9%) | 7 (41,2%) | 0% | - | - | - | [14] |
A. baumannii | 2016, Brazil | Leite | 20 | OXA-51, OXA-23, OXA-143 (100%) | 20 (100%) | 20 (100%) | in vitro (CB, TK) | 0% | - | - | - | - | - | - | [83] |
S. aureus | 2018, Italy | Simonetti | 16 | MRSA (100%) | 0% | 2 (12%) | in vitro (CB, TK); in vivo (mouse, wound infection) | 16 (100%) | 0% | 0% | 0% | - | - | - | [90] |
2014, Switzerland | Mihailescu | 1 | MRSA (100%) | 0% | 0% | in vitro (ET, TK); in vivo (foreign-body infection model) | in vitro: 1 (100%); in vivo: 100% at day 12 | 0% | 0% | 0% | - | - | - | [96] | |
2013, China | Tang | 8 | MRSA (100%) | 0% | 8 (100%) | in vitro (biofilm assay) | 4 (50%) | - | - | - | - | - | - | [91] | |
2012, Spain | Garrigos | 1 | MRSA (100%) | - | - | in vitro (TK); in vivo (rat, tissue cage infection) | in vivo: 1 (100%) at day 8 and day 11 | - | - | in vitro: 1 (100%) | - | - | In vitro FOS antagonized the effect of RIF. | [37] | |
2012, Taiwan | Tang | 33 | MRSA (100%) | 6% (planktonic) 94% (biofilm) | 0% (planktonic) 79% (biofilm) | in vitro (TK) | 0% | - | - | - | - | - | - | [69] | |
2001, Austria | Grif | 5 | MRSA (100%) | - | - | in vitro (CB, TK) | 100% | - | - | - | - | - | - | [43] | |
1987, France | Quentin | 6 | - | 33% | 0% | in vitro (TK) | 0% | 0% | 33% | 33% | - | - | RIF antagonizes FOS. In particular, it antagonizes FOS against susceptible and intermediate isolates to RIF. The combination resulted indifferent against RIF-resistant isolates. For 2 isolates it was not possible to infer their susceptibility to RIF. | [35] | |
1984, Germany | Traub | 6 | GRMR (100%) | 0% | 0% | in vitro (CB); in vivo (mouse, peritonitis) | - | - | 2 (33%) | - | - | - | - | [202] | |
1978, Spain | Olay | 38 | - | - | - | in vitro (CB); in vivo (mouse, peritonitis) | 13 (34%) | 24 (63%) | 1 (2%) | - | - | - | - | [14] | |
S. pneumoniae | 1994, France | Doit | 26 | - | 0% | 0% | in vitro (TK) | 0% | 0% | 100% | 0% | - | - | - | [134] |
S. agalactiae, S. pyogenes, S. oralis | 2017, Germany | Gonzalez Moreno | 3 | - | 33% | 0% | in vitro (ET) | 1 (100%) S. oralis | - | 1 (100%) S. agalactiae; 1 (100%) S. pyogenes | - | - | - | - | [9] |
E. feacalis | 2018, Italy | Simonetti | 16 | - | 0% | 2 (12%) | in vitro (CB, TK); in vivo (mouse, wound infection) | 12 (75%) | 0% | 4 (25%)* | 0% | - | - | *The FICIs were interpreted as indifferent if > 0.5 and < 4. | [90] |
2013, Taiwan | Tang | 9 | VRE (100%) | 56% | 11% | in vitro (TK, biofilm) | TK: 3 (33%); biofilm: 9 (100%) | - | - | 0% | - | - | - | [13] | |
E. faecium | 2018, Italy | Simonetti | 15 | - | 0% | 2 (13%) | in vitro (CB, TK); in vivo (mouse, wound infection) | 11 (73%) | 0% | 4 (27%)* | 0% | - | - | *The FICIs were interpreted as indifferent if > 0.5 and < 4. | [90] |
2013, Taiwan | Tang | 10 | VRE (100%) | 70% | 90% | in vitro (TK) | TK: 2 (20%); biofilm: 4 (40%) | - | - | - | - | - | - | [13] | |
S. epidermidis | 2011, Austria | Grif | 2 | MRSA (100%) | - | - | in vitro (CB, TK) | 2 (100%) | - | - | - | - | - | - | [43] |
1987, France | Quentin | 3 | - | NA | NA | in vitro (TK) | 0% | 0% | 50% | - | - | - | For 1 isolate it was not possible to infer its susceptibility to RIF. | [35] | |
N. gonorrhoeae | 2015, Netherlands | Wind | 4 | - | - | - | in vitro (ET) | 1 (25%) | - | - | - | - | - | - | [54] |
Antibiotic Class | Strains | Number of Studies | Number of Isolates | Synergistic Effect (%) | Additive Effect (%) | Indifferent Effect (%) | Antagonistic Effect (%) | Comments |
---|---|---|---|---|---|---|---|---|
Penicillins, penicillins + β-lactamase inhibitors, penicillinase-resistant penicillins | Enterobacterales | 9 | 267 | 51 | 19 | 28 | One study [11] reported high rates of indifferent effect of FOS + PIP/TAZ against PIP/TAZ-R isolates. | |
P. aeruginosa | 6 | 235 | 15 | 40 | 45 | - | ||
Acinetobacter spp. | 1 | 5 | 60 | 20 | 0 | - | ||
Staphylococcus spp. | 7 | 295 | 42 | 15 | 33 | - | ||
Streptococcus spp. | 6 | 119 | 30 | 55 | 15 | - | ||
Enterococcus spp. | 4 | 60 | 25 | 0 | 42 | 10 | Antagonistic effect observed in biofilms of some E. faecalis isolates. | |
Cephalosporins, cephalosporins + β-lactamase inhibitors | Enterobacterales | 8 | 251 | 33 | 33 | 20 | One study [11] reported high rates of indifferent effect of FOS + 4 different cephalosporins against cephalosporin-R isolates. | |
P. aeruginosa | 13 | 318 | 36 | 40 | 23 | 1 | Antagonistic effect against 4 P. aeruginosa isolates [22]. | |
Acinetobacter spp. | 2 | 39 | 8 | 3 | 3 | Effect of the combination indeterminate on 33 isolates. | ||
Staphylococcus spp. | 12 | 284 | 57 | 12 | 9 | 1 | Great heterogeneity of results. | |
Streptococcus spp. | 6 | 63 | 33 | 59 | 8 | - | ||
Enterococcus spp. | 2 | 77 | 78 | 0 | 22 | - | ||
N. gonorrhoeae | 3 | 44 | 0 | 5 | 95 | - | ||
Carbapenems | Enterobacterales | 23 | 542 | 43 | 37 | 19 | ||
P. aeruginosa | 15 | 445 | 29 | 25 | 36 | 1 | - | |
Acinetobacter spp. | 5 | 103 | 28 | 17 | 22 | - | ||
Gram + cocci | 12 | 231 | 56 | 13 | 22 | 8 | S. aureus, S. epidermidis, Enterococci spp., S. pneumoniae. High rates of antagonistic effect reported on E. faecalis isolates. | |
N. gonorrhoeae | 1 | 4 | 0 | 75 | 25 | - | ||
Monobactams | Enterobacterales | 4 | 71 | 15 | 27 | 45 | - | |
P. aeruginosa | 3 | 138 | 29 | 54 | 17 | - | ||
Quinolones | Enterobacterales | 6 | 264 | 17 | 12 | 69 | - | |
P. aeruginosa | 18 | 263 | 42 | 36 | 38 | 5 | Synergism rates not concordant in all studies. | |
Acinetobacter spp. | 3 | 41 | 2 | 10 | 7 | - | ||
Staphylococcus spp. | 7 | 90 | 37 | 9 | 34 | - | ||
N. gonorrhoeae | 1 | 4 | 0 | 0 | 100 | - | ||
Aminoglycosides | Enterobacterales | 19 | 713 | 20 | 31 | 36 | Synergism rates not concordant in all studies. | |
P. aeruginosa | 23 | 440 | 43 | 29 | 27 | 1 | Synergism rates not concordant in all studies. | |
Acinetobacter spp. | 5 | 102 | 37 | 5 | 18 | Synergism rates not concordant in all studies. | ||
S. aureus | 8 | 301 | 26 | 4 | 53 | 1 | Antagonistic effect of FOS + gentamicin against 4 isolates [12]. | |
Streptococcus spp. | 1 | 16 | 0 | 52 | 48 | - | ||
E. faecium | 1 | 8 | 62 | 13 | 25 | - | ||
N. gonorrhoeae | 1 | 4 | 0 | 25 | 75 | - | ||
H. influenzae | 1 | 1 | 0 | 0 | 100 | - | ||
Glycopeptides | A. baumannii | 1 | 20 | 0 | 0 | 100 | - | |
Staphylococcus spp. | 12 | 229 | 17 | 16 | 65 | 2 | In 2 studies [69,176] VAN exhibited higher synergistic rates than TEC. Antagonistic effect with FOS + VAN against 5 isolates of S. aureus [12,43]. | |
Enterococcus spp. | 2 | 55 | 55 | 22 | 24 | - | ||
S. pneumoniae | 2 | 28 | 4 | 4 | 92 | - | ||
Macrolides | Enterobacterales | 1 | 87 | 53 | 34 | 14 | - | |
N. gonorrhoeae | 2 | 12 | 0 | 0 | 100 | - | ||
P. aeruginosa | 2 | 31 | 19 | 79 | 2 | - | ||
S. aureus | 1 | 34 | 26 | 68 | 6 | - | ||
S. epidermidis | 1 | 11 | 0 | 0 | 100 | - | ||
S. pseudointermedius | 1 | 8 | 62 | 25 | 12 | - | ||
Streptococcus spp. | 1 | 26 | 15 | 27 | 58 | Only erythromycin was tested in combination with FOS. Against almost half of strains additive or, less frequently, synergistic effect was observed. | ||
Tetracyclines | Enterobacterales | 2 | 120 | 5 | 11 | 84 | Indifferent effect when tetracycline was tested, but one study showed additive or synergistic effect when using minocycline + FOS combination [38]. | |
P. aeruginosa | 1 | 5 | 40 | 60 | 0 | - | ||
Acinetobacter spp. | 1 | 25 | 12 | 56 | 32 | In all experiment minocycline susceptibility restoration was observed [65]. | ||
S. aureus | 3 | 152 | 72 | 1 | 27 | - | ||
Enterococcus spp. | 3 | 75 | 24 | 10 | 20 | Indifferent effect when minocycline was tested, but one study showed additive or synergistic effect when using doxicycline + FOS combination [68]. | ||
N. gonorrhoeae | 1 | 4 | 0 | 0 | 100 | - | ||
Polymyxins | Enterobacterales | 18 | 381 | 26 | 35 | 35 | 4 | Antagonistic effect of FOS + colistin observed against 14 isolates of K. pneumoniae. |
P. aeruginosa | 4 | 111 | 27 | 41 | 31 | - | ||
Acinetobacter spp. | 12 | 206 | 19 | 15 | 32 | 1 | Antagonistic effect of FOS + colistin observed against 3 isolates of A. baumannii. | |
N. gonorrhoeae | 1 | 4 | 0 | 0 | 100 | - | ||
Daptomycin | Staphylococcus spp. | 13 | 186 | 56 | 31 | 14 | - | |
Enterococcus spp. | 5 | 49 | 97 | 0 | 3 | - | ||
Tigecycline | Enterobacterales | 9 | 313 | 17 | 44 | 34 | 1 | One in vivo study observed indifferent effect in 100% of cases against E. coli [73] and one in vitro study reported 2 cases of antagonistic effect against K. pneumoniae isolates [89]. |
P. aeruginosa | 1 | 15 | 13 | 0 | 87 | - | ||
Acinetobacter spp. | 2 | 25 | 0 | 16 | 4 | - | ||
S. aureus | 2 | 48 | 21 | 0 | 79 | Conflicting results (total indifference or almost total synergistic effect). | ||
Enterococcus spp. | 3 | 61 | 61 | 0 | 9 | - | ||
N. gonorrhoeae | 1 | 4 | 0 | 0 | 100 | - | ||
Linezolid | Enterococcus spp. | 4 | 69 | 17 | 29 | 6 | Synergistic effect was never observed for E. faecalis (2 studies) [13,201]. | |
S. aureus | 9 | 166 | 74 | 2 | 2 | - | ||
S. epidermidis | 1 | 2 | 100 | 0 | 0 | - | ||
Rifampin | E. coli | 1 | 17 | 6 | 53 | 41 | - | |
A. baumannii | 1 | 20 | 0 | 0 | 100 | - | ||
S. aureus | 9 | 114 | 35 | 21 | 4 | 3 | Antagonistic effect of FOS + RIF against 3 isolates [35,37]. | |
S. epidermidis | 2 | 5 | 40 | 0 | 40 | - | ||
Streptococcus spp. | 2 | 29 | 3 | 0 | 97 | - | ||
Enterococcus spp. | 2 | 50 | 59 | 0 | 12 | - | ||
N. gonorrhoeae | 1 | 4 | 25 | 0 | 75 | - | ||
Metronidazole | Intestinal bacteria (not specified) | 1 | NA | - | - | - | - | |
H. pylori | 1 | 24 | 0 | 21 | 80 | - | ||
Spectinomycin | N. gonorrhoeae | 1 | 4 | 0 | 0 | 100 | - | |
Sulbactam | A. baumannii | 1 | 8 | 75 | 0 | 25 | - | |
Lincomycin | S. aureus | 1 | 37 | 81 | 19 | 0 | - | |
Nitroxoline | P. aeruginosa | 1 | 8 | 12 | 0 | 88 | - | |
Dalfopristin-Quinupristin | Staphylococcus spp. | 2 | 12 | 100 | 0 | 0 | - | |
Fusidic acid | S. aureus | 3 | 239 | 63 | 4 | 33 | - | |
Chloramphenicol | Enterobacterales | 4 | 468 | 39 | 34 | 25 | - | |
P. aeruginosa | 1 | 19 | 53 | 37 | 10 | - | ||
S. aureus | 1 | 48 | 44 | 37 | 19 | - | ||
Nitrofurantoin | Enterobacterales | 1 | 100 | 0 | 0 | 100 | - | |
Enterococcus spp. | 1 | 32 | 0 | 0 | 100 | - | ||
Trimethoprim-Sulfamethoxazole | Enterobacterales | 2 | 120 | 2 | 5 | 89 | - | |
S. aureus | 1 | 148 | 3 | 0 | 95 | 3 | Antagonistic effect was reported for 4 isolates [12]. |
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendlin, D.; Stapley, E.O.; Jackson, M.; Wallick, H.; Miller, A.K.; Wolf, F.J.; Miller, T.W.; Chaiet, L.; Kahan, F.M.; Foltz, E.L.; et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969, 166, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 69, 2045–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet. Infect. Dis. 2010, 10, 43–50. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Zhanel, M.A.; Karlowsky, J.A. Oral Fosfomycin for the Treatment of Acute and Chronic Bacterial Prostatitis Caused by Multidrug-Resistant Escherichia coli. Can. J. Infect. Dis. Med. Microbiol. = J. Can. des Mal. Infect. la Microbiol. Medicale 2018, 2018, 1404813. [Google Scholar] [CrossRef] [Green Version]
- Petrosillo, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J. Clin. Med. 2019, 8, 934. [Google Scholar] [CrossRef] [Green Version]
- Krcmery, S.; Hromec, J.; Demesova, D. Treatment of lower urinary tract infection in pregnancy. Int. J. Antimicrob. Agents 2001, 17, 279–282. [Google Scholar] [CrossRef]
- Behera, B.; Mohanty, S.; Sahu, S.; Praharaj, A. In vitro activity of fosfomycin against multidrug-resistant urinary and nonurinary Gram-negative isolates. Indian, J. Crit. Care Med. 2018, 22, 533–536. [Google Scholar] [CrossRef]
- Gonzalez Moreno, M.; Trampuz, A.; Di Luca, M. Synergistic antibiotic activity against planktonic and biofilm-embedded Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus oralis. J. Antimicrob. Chemother. 2017, 72, 3085–3092. [Google Scholar] [CrossRef]
- EUCAST: Clinical breakpoints and dosing of antibiotics. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 12 April 2020).
- Avery, L.M.; Sutherland, C.A.; Nicolau, D.P. In vitro investigation of synergy among fosfomycin and parenteral antimicrobials against carbapenemase-producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2019, 95, 216–220. [Google Scholar] [CrossRef]
- Alvarez, S.; Jones, M.; Berk, S.L. In vitro activity of fosfomycin, alone and in combination, against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1985, 28, 689–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.-J.; Chen, C.-C.; Zhang, C.-C.; Su, B.-A.; Li, C.-M.; Weng, T.-C.; Chiang, S.-R.; Ko, W.-C.; Chuang, Y.-C. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn. Microbiol. Infect. Dis. 2013, 77, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Olay, T.; Rodriguez, A.; Oliver, L.E.; Vicente, M.V.; Quecedo, M.C.R. Interaction of fosfomycin with other antimicrobial agents: In vitro and in vivo studies. J. Antimicrob. Chemother. 1978, 4, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Berleur, M.; Guérin, F.; Massias, L.; Chau, F.; Poujade, J.; Cattoir, V.; Fantin, B.; de Lastours, V. Activity of fosfomycin alone or combined with temocillin in vitro and in a murine model of peritonitis due to KPC-3- or OXA-48-producing Escherichia coli. J. Antimicrob. Chemother. 2018, 73, 3074–3080. [Google Scholar] [CrossRef]
- Chavanet, P.; Peyrard, N.; Pechinot, A.; Buisson, M.; Duong, M.; Neuwirth, C.; Kazmierczak, A.; Portier, H. In vivo activity and pharmacodynamics of amoxicillin in combination with fosfomycin in fibrin clots infected with highly penicillin-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 1996, 40, 2062–2066. [Google Scholar] [CrossRef] [Green Version]
- Vicente, M.V.; Olay, T.; Rodriguez, A. Experimental endocarditis caused by Streptococcus sanguis: Single and combined antibiotic therapy. Antimicrob. Agents Chemother. 1981, 20, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, H.; Kikuchi, Y.; Honda, T.; Isago, T.; Nozaki, M. Enhancement of antimicrobial effects of various antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by combination with fosfomycin. J. Infect. Chemother. 2003, 9, 304–309. [Google Scholar] [CrossRef]
- Courcol, R.J.; Martin, G.R. In-vitro activity of the combination of ceftriaxone and fosfomycin against staphylococci. J. Antimicrob. Chemother. 1987, 19, 276–278. [Google Scholar] [CrossRef]
- Portier, H.; Lucht, F.; Chavanet, P.; Kazmierczak, A.; Tremeaux, J.C.; Duez, J.M. Cefotaxime in combination with other antibiotics for the treatment of severe methicillin-resistant staphylococcal infections. Infection 1985, 13, S123–S128. [Google Scholar] [CrossRef]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00779-19. [Google Scholar] [CrossRef] [Green Version]
- Pruekprasert, P.; Tunyapanit, W. In vitro activity of fosfomycin-gentamicin, fosfomycin-ceftazidime, fosfomycin-imipenem and ceftazidime-gentamicin combinations against ceftazidime-resistant Pseudomonas aeruginosa. Southeast Asian, J. Trop. Med. Public Health 2005, 36, 1239–1242. [Google Scholar]
- Chavanet, P.; Beloeil, H.; Pechinot, A.; Duigou, F.; Buisson, J.C.; Duong, M.; Neuwirth, C.; Kazmierczak, A.; Portier, H. In vivo activity and pharmacodynamics of cefotaxime or ceftriaxone in combination with fosfomycin in fibrin clots infected with highly penicillin- resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 1995, 39, 1736–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribes, S.; Taberner, F.; Domenech, A.; Cabellos, C.; Tubau, F.; Liñ Ares, J.; Ferná Ndez Viladrich, P.; Gudiol, F. Evaluation of fosfomycin alone and in combination with ceftriaxone or vancomycin in an experimental model of meningitis caused by two strains of cephalosporin-resistant Streptococcus pneumoniae. J. Antimicrob. Chemother. 2006, 57, 931–936. [Google Scholar] [CrossRef]
- Utsui, Y.; Ohya, S.; Magaribuchi, T.; Tajima, M.; Yokota, T. Antibacterial activity of cefmetazole alone and in combination with fosfomycin against methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1986, 30, 917–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmierczak, A.; Pechinot, A.; Duez, J.M.; Kohli, E.; Tremeaux, J.C.; Portier, H. Bactericidal activity of cefotaxime and fosfomycin in cerebrospinal fluid during the treatment of rabbit meningitis experimentally induced by methicillin-resistant staphylococcus aureus. Infection 1985, 13, S76–S80. [Google Scholar] [CrossRef]
- Chavanet, P.; Muggeo, E.; Waldner, A.; Dijoux, S.; Caillot, D.; Portier, H. Synergism between cefotaxime and fosfomycin in the therapy of methicillin and gentamicin resistant Staphylococcus aureus infection in rabbits. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 271–275. [Google Scholar] [CrossRef]
- Del Río, A.; García-de-la-Mària, C.; Entenza, J.M.; Gasch, O.; Armero, Y.; Soy, D.; Mestres, C.A.; Pericás, J.M.; Falces, C.; Ninot, S.; et al. Fosfomycin plus β-Lactams as Synergistic Bactericidal Combinations for Experimental Endocarditis Due to Methicillin-Resistant and Glycopeptide-Intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 2016, 60, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Papp-Wallace, K.M.; Zeiser, E.T.; Becka, S.A.; Park, S.; Wilson, B.M.; Winkler, M.L.; D’Souza, R.; Singh, I.; Sutton, G.; Fouts, D.E.; et al. Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas aeruginosa. J. Infect. Dis. 2019, 220, 666–676. [Google Scholar] [CrossRef] [Green Version]
- Lefort, A.; Chau, F.; Lepeule, R.; Dubée, V.; Kitzis, M.D.; Dion, S.; Fantin, B. Activity of fosfomycin alone or combined with cefoxitin in vitro and in vivo in a murine model of urinary tract infection due to Escherichia coli harbouring CTX-M-15-type extended-spectrum β-lactamase. Int. J. Antimicrob. Agents 2014, 43, 366–369. [Google Scholar] [CrossRef]
- Ojdana, D.; Gutowska, A.; Sacha, P.; Majewski, P.; Wieczorek, P.; Tryniszewska, E. Activity of Ceftazidime-Avibactam Alone and in Combination with Ertapenem, Fosfomycin, and Tigecycline Against Carbapenemase-Producing Klebsiella pneumoniae. Microb. Drug Resist. 2019, 25, 1357–1364. [Google Scholar] [CrossRef]
- Cuba, G.; Rocha-Santos, G.; Cayô, R.; Streling, A.; Nodari, C.; Gales, A.; Pignatari, A.; Nicolau, D.; Kiffer, C. In Vitro Synergy of Ceftolozane/Tazobactam in Combination With Fosfomycin or Aztreonam Against MDR Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2020, 75, 1874–1878. [Google Scholar] [CrossRef] [PubMed]
- Avery, L.M.; Sutherland, C.A.; Nicolau, D.P. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Monogue, M.; Nicolau, D. Antibacterial Activity of Ceftolozane/Tazobactam Alone and in Combination With Other Antimicrobial Agents Against MDR Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2018, 73, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Quentin, C.; Saivin, S.; Lafferriere, C.; Noury, P.; Bebear, C. In vitro activity of fosfomycin combined with rifampin, pefloxacin and imipenem against staphylococci: A study by the time–kill curve method. Drugs Exp. Clin. Res. 1987, 13, 219–224. [Google Scholar] [PubMed]
- Pachón-Ibáñez, M.E.; Ribes, S.; Domínguez, M.Á.; Fernández, R.; Tubau, F.; Ariza, J.; Gudiol, F.; Cabellos, C. Efficacy of fosfomycin and its combination with linezolid, vancomycin and imipenem in an experimental peritonitis model caused by a Staphylococcus aureus strain with reduced susceptibility to vancomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Garrigós, C.; Murillo, O.; Lora-Tamayo, J.; Verdaguer, R.; Tubau, F.; Cabellos, C.; Cabo, J.; Ariza, J. Fosfomycin-daptomycin and other fosfomycin combinations as alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Flamm, R.K.; Rhomberg, P.R.; Lindley, J.M.; Sweeney, K.; Ellis-Grosse, E.J.; Shortridge, D. Evaluation of the Bactericidal Activity of Fosfomycin in Combination with Selected Antimicrobial Comparison Agents Tested against Gram-Negative Bacterial Strains by Using Time–kill Curves. Antimicrob. Agents Chemother. 2019, 63, e02549-18. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, M.; Suzuki, K.; Asano, N.; Araki, K.; Shukuya, N.; Egami, T.; Higurashi, Y.; Morita, K.; Uchimura, H.; Watanabe, T. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J. Infect. Chemother. 2002, 8, 37–42. [Google Scholar] [CrossRef]
- Mikuniya, T.; Kato, Y.; Ida, T.; Maebashi, K.; Monden, K.; Kariyama, R.; Kumon, H. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J. Infect. Chemother. 2007, 13, 285–290. [Google Scholar] [CrossRef]
- Bugnon, D.; Potel, G.; Xiong, Y.Q.; Caillon, J.; Navas, D.; Gras, C.; Kergueris, M.F.; Le Conte, P.; Jehl, F.; Baron, D.; et al. Bactericidal effect of pefloxacin and fosfomycin against Pseudomonas aeruginosa in a rabbit endocarditis model with pharmacokinetics of pefloxacin in humans simulated in vivo. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 575–580. [Google Scholar] [CrossRef]
- El-Wafa, W.M.A.; Ibrahim, Y.M. In Vitro Activity of Fosfomycin in Double and Triple Combinations with Imipenem, Ciprofloxacin and Tobramycin Against Multidrug-Resistant Escherichia coli. Curr. Microbiol. 2020, 77, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grif, K.; Dierich, M.; Pfaller, K.; Miglioli, P.; Allerberger, F. In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J. Antimicrob. Chemother. 2001, 48, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thauvin, C.; Lemeland, J.F.; Humbert, G.; Fillastre, J.P. Efficacy of pefloxacin-fosfomycin in experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1988, 32, 919–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullmann, U. Synergism between ciprofloxacin and fosfomycin in vitro. Infection 1987, 15, 264. [Google Scholar] [CrossRef]
- Mikuniya, T.; Kato, Y.; Kariyama, R.; Monden, K.; Hikida, M.; Kumon, H. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med. Okayama 2005, 59, 209–216. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Llma, D.A.F.; Do Nascimento, M.M.P.; Vitali, L.H.; Martinez, R. In vitro activity of antimicrobial combinations against multidrug-resistant Pseudomonas aeruginosa. Rev. Soc. Bras. Med. Trop. 2013, 46, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.G.; Kenney, T.F.; Macleod, D.L.; Henig, N.R.; O’Toole, G.A. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathog. Dis. 2013, 67, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhou, K.; Guo, L.; Ji, J.; Niu, T.; Xiao, T.; Shen, P.; Xiao, Y. In vitro Pharmacokinetics/Pharmacodynamics Evaluation of Fosfomycin Combined with Amikacin or Colistin against KPC2-Producing Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2017, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Avial, I.; Pena, I.; Picazo, J.J.; Rodríguez-Avial, C.; Culebras, E. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int. J. Antimicrob. Agents 2015, 46, 616–621. [Google Scholar] [CrossRef]
- Montgomery, A.B.; Rhomberg, P.R.; Abuan, T.; Walters, K.A.; Flamm, R.K. Potentiation effects of amikacin and fosfomycin against selected amikacin-nonsusceptible Gram-negative respiratory tract pathogens. Antimicrob. Agents Chemother. 2014, 58, 3714–3719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souli, M.; Galani, I.; Boukovalas, S.; Gourgoulis, M.G.; Chryssouli, Z.; Kanellakopoulou, K.; Panagea, T.; Giamarellou, H. In vitro interactions of antimicrobial combinations with fosfomycin against KPC-2-producing Klebsiella pneumoniae and protection of resistance development. Antimicrob. Agents Chemother. 2011, 55, 2395–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wind, C.M.; De Vries, H.J.C.; Van Dam, A.P. Determination of in vitro synergy for dual antimicrobial therapy against resistant Neisseria gonorrhoeae using Etest and agar dilution. Int. J. Antimicrob. Agents 2015, 45, 305–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemapanpairoa, J.; Changpradub, D.; Thunyaharn, S.; Santimaleeworagun, W. Vancomycin-resistant enterococcal infection in a Thai university hospital: Clinical characteristics, treatment outcomes, and synergistic effect. Infect. Drug Resist. 2019, 12, 2049–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef] [PubMed]
- Hauser, C.; Hirzberger, L.; Unemo, M.; Furrer, H.; Endimiani, A. In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 2015, 59, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Presterl, E.; Hajdu, S.; Lassnigg, A.M.; Hirschl, A.M.; Holinka, J.; Graninger, W. Effects of azithromycin in combination with vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2009, 53, 3205–3210. [Google Scholar] [CrossRef] [Green Version]
- Kasai, T.; Yuzuru Homma, J. Synergistic effects of a macrolide and a cell wall-affecting antibiotic on pseudomonas aeruginosa in vitro and in vivo 2. Combined effects of a macrolide with a fosfomycin and an aminoglycoside antibiotic. J. Antibiot. (Tokyo) 1982, 35, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Dicicco, M.; Neethirajan, S.; Weese, J.S.; Singh, A. In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius. BMC Microbiol. 2014, 14, 129. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Vicente, M.V.; Olay, T. Single- and combination-antibiotic therapy for experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1987, 31, 1444–1445. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Mao, N.F.; Wang, L.; Zhang, H.B.; Chen, Q.; Liu, H.; Tang, X.; Jin, T.; Zhu, C.T.; Li, F.B.; et al. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PLoS ONE 2014, 9, e113133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronado-Álvarez, N.M.; Parra, D.; Parra-Ruiz, J. Clinical efficacy of fosfomycin combinations against a variety of Gram-positive cocci. Enferm. Infecc. Microbiol. Clin. 2019, 37, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Shankar, C.; Nabarro, L.E.B.; Anandan, S.; Veeraraghavan, B. Minocycline and Tigecycline: What Is Their Role in the Treatment of Carbapenem-Resistant Gram-Negative Organisms? Microb. Drug Resist. 2017, 23, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, F.; Sun, E.; Ma, R.; Qu, C.; Ma, L. In vitro antibacterial activity of combinations of fosfomycin, minocycline and polymyxin B on pan-drug-resistant Acinetobacter baumannii. Exp. Ther. Med. 2013, 5, 1737–1739. [Google Scholar] [CrossRef] [Green Version]
- Daza, R.; Moreno Lopez, M.; Damaso, D. Interactions of fosfomycin with other antibiotics. Chemotherapy 1977, 23, 86–92. [Google Scholar] [CrossRef]
- Descourouez, J.L.; Jorgenson, M.R.; Wergin, J.E.; Rose, W.E. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob. Agents Chemother. 2013, 57, 1518–1520. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.; Brown, R.; Ashcraft, D.; Pankey, G. In Vitro Synergy with Fosfomycin Plus Doxycycline Against Linezolid and Vancomycin-resistant Enterococcus faecium. J. Glob. Antimicrob. Resist. 2020, 22, 78–83. [Google Scholar] [CrossRef]
- Tang, H.-J.; Chen, C.-C.; Cheng, K.-C.; Toh, H.-S.; Su, B.-A.; Chiang, S.-R.; Ko, W.-C.; Chuang, Y.-C. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J. Antimicrob. Chemother. 2012, 67, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Falagas, M.E.; Wang, R.; Karageorgopoulos, D.E.; Yu, X.; Liu, Y.; Cai, Y.; Liang, B.; Song, X.; Liu, Z. In vitro activity of minocycline combined with fosfomycin against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antibiot. (Tokyo) 2011, 64, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Crémieux, A.-C.; Dinh, A.; Nordmann, P.; Mouton, W.; Tattevin, P.; Ghout, I.; Jayol, A.; Aimer, O.; Gatin, L.; Verdier, M.-C.; et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2019, 74, 2666–2675. [Google Scholar] [CrossRef] [Green Version]
- Ku, N.S.; Lee, S.H.; Lim, Y.S.; Choi, H.; Ahn, J.Y.; Jeong, S.J.; Shin, S.J.; Choi, J.Y.; Choi, Y.H.; Yeom, J.S.; et al. In vivo efficacy of combination of colistin with fosfomycin or minocycline in a mouse model of multidrug-resistant Acinetobacter baumannii pneumonia. Sci. Rep. 2019, 9, 17127. [Google Scholar] [CrossRef] [PubMed]
- Corvec, S.; Tafin, U.F.; Betrisey, B.; Borens, O.; Trampuz, A. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-lactamase-producing escherichia coli in a foreign-body infection model. Antimicrob. Agents Chemother. 2013, 57, 1421–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evren, E.; Azap, Ö.K.; Çolakoǧlu, Ş.; Arslan, H. In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48-positive Klebsiella pneumoniae strains. Diagn. Microbiol. Infect. Dis. 2013, 76, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Bulman, Z.P.; Zhao, M.; Satlin, M.J.; Chen, L.; Kreiswirth, B.N.; Walsh, T.J.; Nation, R.L.; Li, J.; Tsuji, B.T. Polymyxin B and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model. Int. J. Antimicrob. Agents 2018, 52, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.C.; Landersdorfer, C.B.; McIntosh, M.P.; Peleg, A.Y.; Hirsch, E.B.; Kirkpatrick, C.M.; Bergen, P.J. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J. Antimicrob. Chemother. 2016, 71, 2218–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2018, 73, 1–11. [Google Scholar] [CrossRef]
- Daptomycin Breakpoints for Enterococci; 2019. Available online: https://clsi.org/media/3356/mr06ed1_sample.pdf (accessed on 4 August 2020).
- García-de-la-Mària, C.; Gasch, O.; García-Gonzalez, J.; Soy, D.; Shaw, E.; Ambrosioni, J.; Almela, M.; Pericàs, J.M.; Tellez, A.; Falces, C.; et al. The Combination of Daptomycin and Fosfomycin Has Synergistic, Potent, and Rapid Bactericidal Activity against Methicillin-Resistant Staphylococcus aureus in a Rabbit Model of Experimental Endocarditis. Antimicrob. Agents Chemother. 2018, 62, e02633-17. [Google Scholar] [CrossRef] [Green Version]
- Aktas, G.; Derbentli, S. In vitro activity of daptomycin combinations with rifampicin, gentamicin, fosfomycin and fusidic acid against MRSA strains. J. Glob. Antimicrob. Resist. 2017, 10, 223–227. [Google Scholar] [CrossRef]
- Lingscheid, T.; Poeppl, W.; Bernitzky, D.; Veletzky, L.; Kussmann, M.; Plasenzotti, R.; Burgmann, H. Daptomycin plus fosfomycin: A synergistic combination in experimental implant-associated MRSA-osteomyelitis in rats. Antimicrob. Agents Chemother. 2014, 59, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rice, L.B.; Eliopoulos, C.T.; Yao, J.D.C.; Eliopoulos, G.M.; Moellering, R.C. In vivo activity of the combination of daptomycin and fosfomycin compared with daptomycin alone against a strain of Enterococcus faecalis with high-level gentamicin resistance in the rat endocarditis model. Diagn. Microbiol. Infect. Dis. 1992, 15, 173–176. [Google Scholar] [CrossRef]
- Leite, G.C.; Oliveira, M.S.; Perdigão-Neto, L.V.; Rocha, C.K.D.; Guimarães, T.; Rizek, C.; Levin, A.S.; Costa, S.F. Antimicrobial combinations against pan- resistant acinetobacter baumannii isolates with different resistance mechanisms. PLoS ONE 2016, 11, e0151270. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.H.; Chen, C.C.; Lee, M.F.; Chuang, Y.C.; Tang, H.J.; Yu, W.L. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J. Microbiol. Immunol. Infect. 2017, 50, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Berçot, B.; Poirel, L.; Dortet, L.; Nordmann, P. In vitro evaluation of antibiotic synergy for NDM-1-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2011, 66, 2295–2297. [Google Scholar] [CrossRef] [PubMed]
- Samonis, G.; Maraki, S.; Karageorgopoulos, D.E.; Vouloumanou, E.K.; Falagas, M.E. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Papoutsaki, V.; Galani, I.; Papadimitriou, E.; Karantani, I.; Karaiskos, I.; Giamarellou, H. Evaluation of in vitro methods for testing tigecycline combinations against carbapenemase-producing Klebsiella pneumoniae isolates. J. Glob. Antimicrob. Resist. 2020, 20, 98–104. [Google Scholar] [CrossRef]
- Huang, L.; Wang, M.; Sun, L. Synergy Testing by E-Test and Microdilution Checkerboard for Fosfomycin Combined with Tigecycline against KPC-Producing Klebsiella pneumoniae. Clin. Lab. 2019, 65, 2369–2375. [Google Scholar] [CrossRef]
- Yu, W.; Shen, P.; Bao, Z.; Zhou, K.; Zheng, B.; Ji, J.; Guo, L.; Huang, C.; Xiao, Y. In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2017, 50, 237–241. [Google Scholar] [CrossRef]
- Simonetti, O.; Morroni, G.; Ghiselli, R.; Orlando, F.; Brenciani, A.; Xhuvelaj, L.; Provinciali, M.; Offidani, A.; Guerrieri, M.; Giacometti, A.; et al. In vitro and in vivo activity of fosfomycin alone and in combination with rifampin and tigecycline against Grampositive cocci isolated from surgical wound infections. J. Med. Microbiol. 2018, 67, 139–143. [Google Scholar] [CrossRef]
- Tang, H.J.; Chen, C.C.; Cheng, K.C.; Wu, K.Y.; Lin, Y.C.; Zhang, C.C.; Weng, T.C.; Yu, W.L.; Chiu, Y.H.; Toh, H.S.; et al. In Vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 5717–5720. [Google Scholar] [CrossRef] [Green Version]
- Batts, D. Linezolid--a New Option for Treating Gram-Positive Infections. Oncology (willist. Park.) 2000, 14, 23–29. [Google Scholar] [CrossRef]
- Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. Drug Des. Devel. Ther. 2018, 12, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Chai, D.; Liu, X.; Wang, R.; Bai, Y.; Cai, Y. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. Biomed Res. Int. 2016, 2016, 6413982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Chen, H.; Liu, Y.; Xu, S.; Wu, M.; Liu, Z.; Qi, C.; Zhang, G.; Li, J.; Huang, X. Synergistic effect of linezolid with fosfomycin against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. J. Microbiol. Immunol. Infect. 2018, S1684-1182(18)30538-3. [Google Scholar] [CrossRef] [PubMed]
- Mihailescu, R.; Tafin, U.F.; Corvec, S.; Oliva, A.; Betrisey, B.; Borens, O.; Trampuza, A. High activity of fosfomycin and rifampin against methicillin-resistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 2014, 58, 2547–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacky, A.; Makristathis, A.; Apfalter, P.; Willinger, B.; Rotter, M.L.; Hirschl, A.M. In vitro activity of fosfomycin alone and in combination with amoxicillin, clarithromycin and metronidazole against Helicobacter pylori compared with combined clarithromycin and metronidazole. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 276–279. [Google Scholar] [CrossRef]
- Nord, C.; Lahnborg, G. Efficacy of Metronidazole and Fosfomycin Alone and in Combination in the Treatment of Experimentally Induced Intra-Abdominal Infections. Scand. J. Gastroenterol. Suppl. 1984, 90, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Santimaleeworagun, W.; Wongpoowarak, P.; Chayakul, P.; Pattharachayakul, S.; Tansakul, P.; Garey, K.W. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J. Trop. Med. Public Health 2011, 42, 890–900. [Google Scholar]
- Duez, J.M.; Adochitei, A.; Péchinot, A.; Siebor, E.; Sixt, N.; Neuwirth, C. In vitro combinations of five intravenous antibiotics with Dalfopristin-Quinupristin against staphylococcus aureus in a 3-dimensional model. J. Chemother. 2008, 20, 684–689. [Google Scholar] [CrossRef]
- Yu, X.H.; Song, X.J.; Cai, Y.; Liang, B.B.; Lin, D.F.; Wang, R. In vitro activity of two old antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antibiot. (Tokyo) 2010, 63, 657–659. [Google Scholar] [CrossRef] [Green Version]
- Drugeon, H.; Caillon, J.; Juvin, M. In-vitro Antibacterial Activity of Fusidic Acid Alone and in Combination With Other Antibiotics Against Methicillin-Sensitive and -Resistant Staphylococcus Aureus. J. Antimicrob. Chemother. 1994, 34, 899–907. [Google Scholar] [CrossRef]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea, E.J.; Torres, M.A.; Borobio, M.V. Synergism of fosfomycin-ampicillin and fosfomycin-chloramphenicol against Salmonella and Shigella. Antimicrob. Agents Chemother. 1978, 13, 705–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, J.; Baquero, G.; Otal, C.; Rodríguez, A. Treatment of typhoid fever with fosfomycin alone and associated to chloramphenicol or ampicillin. Chemotherapy 1977, 23, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Masters, P.A.; O’Bryan, T.A.; Zurlo, J.; Miller, D.Q.; Joshi, N. Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 2003, 163, 402–410. [Google Scholar] [CrossRef]
- She, P.; Zhou, L.; Li, S.; Liu, Y.; Xu, L.; Chen, L.; Luo, Z.; Wu, Y. Synergistic Microbicidal Effect of Auranofin and Antibiotics Against Planktonic and Biofilm-Encased S. aureus and E. faecalis. Front. Microbiol. 2019, 10, 2453. [Google Scholar] [CrossRef]
- Domalaon, R.; Brizuela, M.; Eisner, B.; Findlay, B.; Zhanel, G.G.; Schweizer, F. Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Amino Acids 2019, 51, 383–393. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Yu, X.; Zhou, H.; Li, B.; Chen, G.; Ye, Z.; Wang, Y.; Cui, X.; Zheng, Y.; et al. Impact of antimicrobial stewardship managed by clinical pharmacists on antibiotic use and drug resistance in a Chinese hospital, 2010–2016: A retrospective observational study. BMJ Open 2019, 9, e026072. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Domalaon, R.; Yang, X.; Schweizer, F. Amphiphilic lysine conjugated to tobramycin synergizes legacy antibiotics against wild-type and multidrug-resistant pseudomonas aeruginosa. Pept. Sci. 2019, 111, e23091. [Google Scholar] [CrossRef]
- Akbari-Ayezloy, E.; Hosseini-Jazani, N.; Yousefi, S.; Habibi, N. Eradication of methicillin resistant S. Aureus biofilm by the combined use of fosfomycin and β-chloro-L-alanine. Iran. J. Microbiol. 2017, 9, 1–10. [Google Scholar]
- Breidenstein, E.B.M.; Courvalin, P.; Meziane-Cherif, D. Antimicrobial activity of plectasin NZ2114 in combination with cell wall targeting antibiotics against VanA-type enterococcus faecalis. Microb. Drug Resist. 2015, 21, 373–379. [Google Scholar] [CrossRef]
- Sakagami, Y.; Komemushi, S.; Tsukamoto, G.; Kondo, H.; Yoshikawa, A.; Muraoka, O. Anti-vRE and anti-MRSA activities of new quinolones and their synergism with commercial antibiotics. Part 2. Biocontrol. Sci. 2008, 13, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchese, A.; Bozzolasco, M.; Gualco, L.; Debbia, E.A.; Schito, G.C.; Schito, A.M. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int. J. Antimicrob. Agents 2003, 22, 95–100. [Google Scholar] [CrossRef]
- Sakagami, Y.; Mimura, M.; Kajimura, K.; Yokoyama, H.; Iinuma, M.; Tanaka, T.; Ohyama, M. Anti-MRSA activity of sophoraflavanone G and synergism with other antibacterial agents. Lett. Appl. Microbiol. 1998, 27, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Dulaney, E.L.; Jacobsen, C.A. Synergy between fosfomycin and arenaemycin. J. Antibiot. (Tokyo) 1988, 41, 982–983. [Google Scholar] [CrossRef]
- Zhang, F.; Zhai, T.; Haider, S.; Liu, Y.; Huang, Z.J. Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria monocytogenes Strain. ACS Omega 2020, 5, 7537–7544. [Google Scholar] [CrossRef] [Green Version]
- Abo-Shama, U.H.; El-Gendy, H.; Mousa, W.S.; Hamouda, R.A.; Yousuf, W.E.; Hetta, H.F.; Abdeen, E.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist. 2020, 13, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Seok, H.; Choi, J.Y.; Wi, Y.M.; Park, D.W.; Peck, K.R.; Ko, K.S. Fosfomycin resistance in escherichia coli isolates from south korea and in vitro activity of fosfomycin alone and in combination with other antibiotics. Antibiotics 2020, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Hickman, R.A.; Hughes, D.; Cars, T.; Malmberg, C.; Cars, O. Cell-wall-inhibiting antibiotic combinations with activity against multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Clin. Microbiol. Infect. 2014, 20, O267–O273. [Google Scholar] [CrossRef] [Green Version]
- Borowski, J.; Linda, H. Combined action of fosfomycin with β lactam and aminoglycoside antibiotics. Chemotherapy 1977, 23, 82–85. [Google Scholar] [CrossRef]
- Takahashi, K.; Kanno, H. Synergistic activities of combinations of β-lactams, fosfomycin, and tobramycin against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1984, 26, 789–791. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, A.; Dos Santos, C.; Cimbro, M.; Gialdroni Grassi, G. Effect of different combinations of sparfloxacin, oxacillin, and fosfomycin against methicillin-resistant staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzawa, H.; Suzuki, J.; Sugai, M.; Miyake, Y.; Suginaka, H. Effect of Combination of Oxacillin and Non-Beta-Lactam Antibiotics on Methicillin-Resistant Staphylococcus Aureus. J. Antimicrob. Chemother. 1994, 33, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Bañón Arias, R.; García López, M.; Pinedo Sánchez, A. Time–kill evaluation of antimicrobial regimens against clinical isolates of penicillin-resistant Streptococcus pneumoniae. J. Chemother. 2001, 13, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Totsuka, K.; Shimizu, K.; Ishii, T.; Yoshida, T.; Orikasa, Y. Effects of Combination of Benzylpenicillin and Fosfomycin on Penicillin-Resistant Streptococcus pneumoniae. Microb. Drug Resist. 1995, 1, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Pestel, M.; Martin, E.; Aucouturier, C.; Lemeland, J.F.; Caron, F. In vitro interactions between different β-lactam antibiotics and fosfomycin against bloodstream isolates of enterococci. Antimicrob. Agents Chemother. 1995, 39, 2341–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, C.; Russello, G.; Chinello, P.; Pasticci, M.B.; Raglio, A.; Ravasio, V.; Rizzi, M.; Scarparo, C.; Vailati, F.; Suter, F. In vitro activity effects of twelve antibiotics alone and in association against twenty-seven enterococcus faecalis strains isolated from italian patients with infective endocarditis: High in vitro synergistic effect of the association ceftriaxone-fosfomycin. Chemotherapy 2012, 57, 426–433. [Google Scholar] [CrossRef]
- Mullane, E.M.; Avery, L.M.; Nicolau, D.P. Comparative Evaluation of the In Vitro Activities of WCK 5222 (Cefepime-Zidebactam) and Combination Antibiotic Therapies against Carbapenem-Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01669-19. [Google Scholar] [CrossRef]
- Hayami, H.; Goto, T.; Kawahara, M.; Ohi, Y. Activities of β-lactams, fluoroquinolones, amikacin and fosfomycin alone and in combination against Pseudomonas aeruginosa isolated from complicated urinary tract infections. J. Infect. Chemother. 1999, 5, 130–138. [Google Scholar] [CrossRef]
- Tessier, F.; Quentin, C. In vitro activity of fosfomycin combined with ceftazidime, imipenem, amikacin, and ciprofloxacin against Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 159–162. [Google Scholar] [CrossRef]
- Martinez-Martinez, L.; Rodriguez, G.; Pascual, A.; Suàrez, A.; Perea, E.J. In-vitro Activity of Antimicrobial Agent Combinations Against Multiresistant Acinetobacter Baumannii. J. Antimicrob. Chemother. 1996, 38, 1107–1108. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, K.; Asahi, Y.; Nakagawa, S.; Tanaka, N.; Inoue, M. In-vitro Activity of Imipenem Combined With Beta-Lactam Antibiotics for Methicillin-Resistant Staphylococcus Aureus. J. Antimicrob. Chemother. 1991, 27, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Doit, C.P.; Bonacorsi, S.P.; Fremaux, A.J.; Sissia, G.; Cohen, R.; Geslin, P.L.; Bingen, E.H. In vitro killing activities of antibiotics at clinically achievable concentrations in cerebrospinal fluid against penicillin-resistant Streptococcus pneumoniae isolated from children with meningitis. Antimicrob. Agents Chemother. 1994, 38, 2655–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakett, V.; Lesage, D.; Delisle, F.; Burghoffer, B.; Richard, G.; Vergez, P.; Petit, J. Synergy of Cefotaxime and Fosfomycin Against Penicillin-Resistant Pneumococci. J. Antimicrob. Chemother. 1993, 31, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Barbee, L.A.; Soge, O.O.; Holmes, K.K.; Golden, M.R. In vitro synergy testing of novel antimicrobial combination therapies against Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2014, 69, 1572–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugathan, S.; Mandal, J. An invitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. J. Med. Microbiol. 2019, 68, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Loose, M.; Link, I.; Naber, K.G.; Wagenlehner, F.M.E. Carbapenem-Containing Combination Antibiotic Therapy against Carbapenem-Resistant Uropathogenic Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 64, e01839-19. [Google Scholar] [CrossRef]
- Lingscheid, T.; Tobudic, S.; Poeppl, W.; Mitteregger, D.; Burgmann, H. In vitro activity of doripenem plus fosfomycin against drug-resistant clinical blood isolates. Pharmacology 2013, 91, 214–218. [Google Scholar] [CrossRef]
- Netikul, T.; Leelaporn, A.; Leelarasmee, A.; Kiratisin, P. In vitro activities of fosfomycin and carbapenem combinations against carbapenem non-susceptible Escherichia coli and Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2010, 35, 609–610. [Google Scholar] [CrossRef]
- Bakthavatchalam, Y.D.; Shankar, A.; Muthuirulandi Sethuvel, D.P.; Asokan, K.; Kanthan, K.; Veeraraghavan, B. Synergistic activity of fosfomycin-meropenem and fosfomycin-colistin against carbapenem resistant Klebsiella pneumoniae: An in vitro evidence. Futur. Sci. OA 2020, 6, FSO461. [Google Scholar] [CrossRef]
- Erturk Sengel, B.; Altinkanat Gelmez, G.; Soyletir, G.; Korten, V. In vitro synergistic activity of fosfomycin in combination with meropenem, amikacin and colistin against OXA-48 and/or NDM-producing Klebsiella pneumoniae. J. Chemother. 2020, 32, 1–7. [Google Scholar] [CrossRef]
- Perdigão Neto, L.V.; Oliveira, M.S.; Martins, R.C.R.; Marchi, A.P.; Gaudereto, J.J.; da Costa, L.A.T.J.; de Lima, L.F.A.; Takeda, C.F.V.; Costa, S.F.; Levin, A.S. Fosfomycin in severe infections due to genetically distinct pan-drug-resistant Gram-negative microorganisms: Synergy with meropenem. J. Antimicrob. Chemother. 2019, 74, 177–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, S.-P.; Wang, S.-F.; Ma, L.; Wang, T.-Y.; Yang, T.-Y.; Siu, L.K.; Chuang, Y.-C.; Lee, P.-S.; Wang, J.-T.; Wu, T.-L.; et al. The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J. Microbiol. Immunol. Infect. 2017, 50, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Albiero, J.; Sy, S.K.B.; Mazucheli, J.; Caparroz-Assef, S.M.; Costa, B.B.; Alves, J.L.B.; Gales, A.C.; Tognim, M.C.B. Pharmacodynamic evaluation of the potential clinical utility of fosfomycin and meropenem in combination therapy against KPC-2-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2016, 60, 4128–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tängdén, T.; Hickman, R.A.; Forsberg, P.; Lagerbäck, P.; Giske, C.G.; Cars, O. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing klebsiella pneumoniae by in vitro time–kill experiments. Antimicrob. Agents Chemother. 2014, 58, 1757–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albiero, J.; Mazucheli, J.; Dos Reis Barros, J.P.; Dos Anjos Szczerepa, M.M.; Belini Nishiyama, S.A.; Carrara-Marroni, F.E.; Sy, S.; Fidler, M.; Sy, S.K.B.; Bronharo Tognim, M.C. Pharmacodynamic attainment of the synergism of meropenem and fosfomycin combination against pseudomonas aeruginosa producing metallo-lactamase. Antimicrob. Agents Chemother. 2019, 63, e00126-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The Combination of Fosfomycin plus Meropenem Is Synergistic for Pseudomonas aeruginosa PAO1 in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, e01682-18. [Google Scholar] [CrossRef] [Green Version]
- Hamou-Segarra, M.; Zamorano, L.; Vadlamani, G.; Chu, M.; Sanchez-Diener, I.; Juan, C.; Blazquez, J.; Hattie, M.; Stubbs, K.A.; Mark, B.L.; et al. Synergistic activity of fosfomycin, β-lactams and peptidoglycan recycling inhibition against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2017, 72, 448–454. [Google Scholar] [CrossRef]
- Kunakonvichaya, B.; Thirapanmethee, K.; Khuntayaporn, P.; Montakantikul, P.; Chomnawang, M.T. Synergistic effects of fosfomycin and carbapenems against carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Int. J. Antimicrob. Agents 2015, 45, 556–557. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Y.; Cao, W.; Cao, S.; Zhang, J. In vitro evaluation of antimicrobial combinations against imipenem-resistant Acinetobacter baumannii of different MICs. J. Infect. Public Health 2018, 11, 856–860. [Google Scholar] [CrossRef]
- Singkham-in, U.; Chatsuwan, T. In vitro activities of carbapenems in combination with amikacin, colistin, or fosfomycin against carbapenem-resistant Acinetobacter baumannii clinical isolates. Diagn. Microbiol. Infect. Dis. 2018, 91, 169–174. [Google Scholar] [CrossRef]
- Guggenbichler, J.P.; Berchtold, D.; Allerberger, F.; Bonatti, H.; Hager, J.; Pfaller, W.; Dierich, M.P. In vitro and in vivo effect of antibiotics on catheters colonized by staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Debbia, E.; Pesce, A.; Schito, G.C. In vitro interactions between teicoplanin and other antibiotics against enterococci and staphylococci. J. Hosp. Infect. 1986, 7, 73–77. [Google Scholar] [CrossRef]
- Wang, L.; Di Luca, M.; Tkhilaishvili, T.; Trampuz, A.; Gonzalez Moreno, M. Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against Escherichia coli and Pseudomonas aeruginosa Biofilms. Front. Microbiol. 2019, 10, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, H.; Zhang, Y.; Ye, Y.; Gao, Y.; Li, J. In vitro and in vivo activity of ciprofloxacin/ fosfomycin combination therapy against ciprofloxacin-resistant Shigella flexneri isolates. Infect. Drug Resist. 2019, 12, 1619–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Hyo, Y.; Ohmori, S.; Ohuchi, M. Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of Pseudomonas aeruginosa. Chemotherapy 2007, 53, 202–209. [Google Scholar] [CrossRef]
- Monden, K.; Ando, E.; Iida, M.; Kumon, H. Role of fosfomycin in a synergistic combination with ofloxacin against Pseudomonas aeruginosa growing in a biofilm. J. Infect. Chemother. 2002, 8, 218–226. [Google Scholar] [CrossRef]
- Kumon, H.; Ono, N.; Iida, M.; Nickel, J.C. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob. Agents Chemother. 1995, 39, 1038–1044. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.Q.; Potel, G.; Caillon, J.; Stephant, G.; Jehl, F.; Bugnon, D.; Le Conte, P.; Baron, D.; Drugeon, H. Comparative efficacies of ciprofloxacin and pefloxacin alone or in combination with fosfomycin in experimental endocarditis induced by multidrug-susceptible and -resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1995, 39, 496–499. [Google Scholar] [CrossRef] [Green Version]
- Vogt, K.; Hahn, H. Synergism between Ciprofloxacin and Fosfomycin against Gram-negative Bacteria in vitro. Zentralblatt fur Bakteriol. 1989, 272, 225–230. [Google Scholar] [CrossRef]
- Figueredo, V.; Neu, H. Synergy of Ciprofloxacin With Fosfomycin in Vitro Against Pseudomonas Isolates From Patients With Cystic Fibrosis. J. Antimicrob. Chemother. 1988, 22, 41–50. [Google Scholar] [CrossRef]
- Weber, P.; Boussougant, Y.; Ichou, F.; Dutoit, C.; Carbon, C. Bactericidal Effect of Ofloxacin Alone and Combined With Fosfomycin or Vancomycin Against Staphylococcus Aureus in Vitro and in Sera From Volunteers. J. Antimicrob. Chemother. 1987, 20, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Luo, Q.; Shi, Q.; Huang, C.; Yu, X.; Niu, T.; Zhou, K.; Zhang, J.; Xiao, Y. In vitro antibacterial effect of fosfomycin combination therapy against colistin-resistant Klebsiella pneumoniae. Infect. Drug Resist. 2018, 11, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li Bassi, G.; Motos, A.; Fernandez-Barat, L.; Aguilera Xiol, E.; Chiurazzi, C.; Senussi, T.; Saco, M.A.; Fuster, C.; Carbonara, M.; Bobi, J.; et al. Nebulized Amikacin and Fosfomycin for Severe Pseudomonas aeruginosa Pneumonia: An Experimental Study. Crit. Care Med. 2019, 47, e470–e477. [Google Scholar] [CrossRef] [PubMed]
- Díez-Aguilar, M.; Morosini, M.I.; Tedim, A.P.; Rodríguez, I.; Aktaş, Z.; Cantón, R. Antimicrobial activity of fosfomycin-tobramycin combination against Pseudomonas aeruginosa isolates assessed by time–kill assays and mutant prevention concentrations. Antimicrob. Agents Chemother. 2015, 59, 6039–6045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaughey, G.; McKevitt, M.; Elborn, J.S.; Tunney, M.M. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J. Cyst. Fibros. 2012, 11, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Fan, Y.; Wang, R.; An, M.-M.; Liang, B.-B. Synergistic effects of aminoglycosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model. J. Antimicrob. Chemother. 2009, 64, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Chinwuba, Z.G.; Chiori, C.O.; Ghobashy, A.A.; Okore, V.C. Determination of the synergy of antibiotic combinations by an overlay inoculum susceptibility disc method. Arzneimittelforschung 1991, 41, 148–150. [Google Scholar]
- López Díaz, M.C.; Ríos, E.; Rodríguez-Avial, I.; Simaluiza, R.J.; Picazo, J.J.; Culebras, E. In-vitro activity of several antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: Potency of plazomicin alone and in combination with other agents. Int. J. Antimicrob. Agents 2017, 50, 191–196. [Google Scholar] [CrossRef]
- Morikawa, K.; Nonaka, M.; Yoshikawa, Y.; Torii, I. Synergistic effect of fosfomycin and arbekacin on a methicillin-resistant Staphylococcus aureus-induced biofilm in a rat model. Int. J. Antimicrob. Agents 2005, 25, 44–50. [Google Scholar] [CrossRef]
- Kono, K.; Takeda, S.; Tatara, I.; Arakawa, K. In vitro activities of arbekacin, alone and in combination, against methicillin-resistant Staphylococcus aureus. Jpn. J. Antibiot. 1994, 47, 710–719. [Google Scholar]
- MacLeod, D.L.; Barker, L.M.; Sutherland, J.L.; Moss, S.C.; Gurgel, J.L.; Kenney, T.F.; Burns, J.L.; Baker, W.R. Antibacterial activities of a fosfomycin/tobramycin combination: A novel inhaled antibiotic for bronchiectasis. J. Antimicrob. Chemother. 2009, 64, 829–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Xu, L.; Yuan, G.; Wang, Y.; Qu, Y.; Zhou, M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci. Rep. 2018, 8, 7237. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Chen, C.C.; Ko, W.C.; Yu, W.L.; Chiang, S.R.; Chuang, Y.C. In vitro efficacy of antimicrobial agents against high-inoculum or biofilm-embedded meticillin-resistant Staphylococcus aureus with vancomycin minimal inhibitory concentrations equal to 2 μg/mL (VA2-MRSA). Int. J. Antimicrob. Agents 2011, 38, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Pistella, E.; Falcone, M.; Baiocchi, P.; Pompeo, M.E.; Perciaccante, A.; Penni, A.; Venditti, M. In vitro activity of fosfomycin in combination with vancomycin or teicoplanin against Staphylococcus aureus isolated from device-associated infections unresponsive to glycopeptide therapy. Infez. Med. 2005, 13, 97–102. [Google Scholar] [PubMed]
- Gatermann, S.; Marre, R.; Schulz, E. The microbiological efficacy of the combination of fosfomycin and vancomycin against clinically relevant staphylococci. Infection 1989, 17, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Debbia, E.; Varaldo, P.E.; Schito, G.C. In vitro activity of imipenem against enterococci and staphylococci and evidence for high rates of synergism with teicoplanin, fosfomycin, and rifampin. Antimicrob. Agents Chemother. 1986, 30, 813–815. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, J.L.; Merlino, R.; Pajot, N.; Goulet, O.; Fauchere, J.L.; Ricour, C.; Veron, M. Conventional and nonconventional modes of vancomycin administration to decontaminate the internal surface of catheters colonized with coagulase-negative staphylococci. J. Parenter. Enter. Nutr. 1990, 14, 593–597. [Google Scholar] [CrossRef]
- Simon, V.; Simon, M. Antibacterial Activity of Teicoplanin and Vancomycin in Combination with Rifampicin, Fusidic Acid or Fosfomycin Against Staphylococci on Vein Catheters. Scand. J. Infect. Dis. 1990, 72, 14–19. [Google Scholar] [CrossRef]
- Albur, M.S.; Noel, A.; Bowker, K.; MacGowan, A. The combination of colistin and fosfomycin is synergistic against NDM-1-producing Enterobacteriaceae in in vitro pharmacokinetic/pharmacodynamic model experiments. Int. J. Antimicrob. Agents 2015, 46, 560–567. [Google Scholar] [CrossRef]
- Wistrand-Yuen, P.; Olsson, A.; Skarp, K.P.; Friberg, L.E.; Nielsen, E.I.; Lagerbäck, P.; Tängdén, T. Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time–kill experiments. Clin. Microbiol. Infect. 2020, S1198-743X(20)30149-X. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; He, J.-T.; Bai, Y.; Wang, R.; Cai, Y. Synergistic Activity of Colistin/Fosfomycin Combination against Carbapenemase-Producing Klebsiella pneumoniae in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Biomed Res. Int. 2018, 2018, 5720417. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Wang, R.; Liu, B.; Zhang, X.; Ni, W.; Wang, J.; Liang, B.; Cai, Y.; Liu, Y. Thymidine-Dependent Staphylococcus aureus Small-Colony Variants Are Induced by Trimethoprim-Sulfamethoxazole (SXT) and Have Increased Fitness during SXT Challenge. Antimicrob. Agents Chemother. 2015, 68, 551–555. [Google Scholar] [CrossRef]
- Sertcelik, A.; Baran, I.; Akinci, E.; Mumcuoglu, I.; Bodur, H. Synergistic Activities of Colistin Combinations with Meropenem, Sulbactam, Minocycline, Disodium Fosfomycin, or Vancomycin Against Different Clones of Carbapenem-Resistant Acinetobacter baumannii Strains. Microb. Drug Resist. 2020, 26, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Liu, X.; Chen, Y.; Chen, D.; Li, J.; Zhang, J. Dose Optimization of Colistin Combinations against Carbapenem-Resistant Acinetobacter baumannii from Patients with Hospital-Acquired Pneumonia in China by Using an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob. Agents Chemother. 2019, 63, e01989-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leelasupasri, S.; Santimaleeworagun, W.; Jitwasinkul, T. Antimicrobial Susceptibility among Colistin, Sulbactam, and Fosfomycin and a Synergism Study of Colistin in Combination with Sulbactam or Fosfomycin against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. J. Pathog. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lertsrisatit, Y.; Santimaleeworagun, W.; Thunyaharn, S.; Traipattanakul, J. In vitro activity of colistin mono- and combination therapy against colistin-resistant Acinetobacter baumannii, mechanism of resistance, and clinical outcomes of patients infected with colistinresistant A. baumannii at a Thai university hospital. Infect. Drug Resist. 2017, 10, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Fan, B.; Guan, J.; Wang, X.; Cong, Y. Activity of colistin in combination with meropenem, tigecycline, fosfomycin, fusidic acid, rifampin or sulbactam against extensively drug-resistant acinetobacter baumannii in a murine thigh-infection model. PLoS ONE 2016, 11, e0157757. [Google Scholar] [CrossRef]
- Wei, W.; Yang, H.; Liu, Y.; Ye, Y.; Li, J. In vitro synergy of colistin combinations against extensively drug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase. J. Chemother. 2016, 28, 159–163. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chen, P.-Y.; Wang, J.-T.; Chang, S.-C. A study on combination of daptomycin with selected antimicrobial agents: In vitro synergistic effect of MIC value of 1 mg/L against MRSA strains. BMC Pharmacol. Toxicol. 2019, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Miŕo, J.M.; Entenza, J.M.; Del Río, A.; Velasco, M.; Castañeda, X.; De La Mària, C.G.; Giddey, M.; Armero, Y.; Pericàs, J.M.; Cervera, C.; et al. High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 2012, 56, 4511–4515. [Google Scholar] [CrossRef] [Green Version]
- Poeppl, W.; Tobudic, S.; Lingscheid, T.; Plasenzotti, R.; Kozakowski, N.; Lagler, H.; Georgopoulos, A.; Burgmann, H. Daptomycin, fosfomycin, or both for treatment of methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model. Antimicrob. Agents Chemother. 2011, 55, 4999–5003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.X.; Sun, X.; Lin, Z.W.; Qi, G.B.; Tu, H.P.; Wu, Y.; Jiang, S.B.; Chen, Z.; Deng, Q.W.; Qu, D.; et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J. Med. Microbiol. 2019, 68, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B.; Eliopoulos, G.M.; Moellering, R.C. In vitro synergism between daptomycin and fosfomycin against Enterococcus faecalis isolates with high-level gentamicin resistance. Antimicrob. Agents Chemother. 1989, 33, 470–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasse, B.; Husmann, L.; Zinkernagel, A.; Weber, R.; Lachat, M.; Mayer, D. Vascular graft infections. Swiss Med. Wkly. 2013, 143, w13754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debbia, E.; Pesce, A.; Schito, G.C. In vitro activity of LY146032 alone and in combination with other antibiotics against Gram-positive bacteria. Antimicrob. Agents Chemother. 1988, 32, 279–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Li, L.; Liu, Y.; Wu, M.; Xu, S.; Zhang, G.; Qi, C.; Du, Y.; Wang, M.; Li, J.; et al. In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of Staphylococcus aureus. Infect. Drug Resist. 2018, 11, 2107–2115. [Google Scholar] [CrossRef] [Green Version]
- Xu-Hong, Y.; Falagas, M.E.; Dong, W.; Karageorgopoulos, D.E.; De-Feng, L.; Rui, W. In vitro activity of fosfomycin in combination with linezolid against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antibiot. (Tokyo) 2014, 67, 369–371. [Google Scholar] [CrossRef]
- Sahuquillo Arce, J.M.; Colombo Gainza, E.; Gil Brusola, A.; Ortiz Estévez, R.; Cantón, E.; Gobernado, M. In vitro activity of linezolid in combination with doxycycline, fosfomycin, levofloxacin, rifampicin and vancomycin against methicillin-susceptible Staphylococcus aureus. Rev. Esp. Quimioter. 2006, 19, 252–257. [Google Scholar]
- Qi, C.; Xu, S.; Wu, M.; Zhu, S.; Liu, Y.; Huang, H.; Zhang, G.; Li, J.; Huang, X. Pharmacodynamics Of Linezolid-Plus-Fosfomycin Against Vancomycin-Susceptible And -Resistant Enterococci In Vitro And In Vivo Of A Galleria mellonella Larval Infection Model. Infect. Drug Resist. 2019, 12, 3497–3505. [Google Scholar] [CrossRef] [Green Version]
- Traub, W.H.; Spohr, M.; Bauer, D. Gentamicin-and methicillin-resistant, clinical isolates of staphylococcus aureus: Comparative in vitro and in vivo efficacy of alternative antimicrobial drugs. Chemotherapy 1984, 30, 102–112. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonello, R.M.; Principe, L.; Maraolo, A.E.; Viaggi, V.; Pol, R.; Fabbiani, M.; Montagnani, F.; Lovecchio, A.; Luzzati, R.; Di Bella, S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics 2020, 9, 500. https://doi.org/10.3390/antibiotics9080500
Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics. 2020; 9(8):500. https://doi.org/10.3390/antibiotics9080500
Chicago/Turabian StyleAntonello, Roberta Maria, Luigi Principe, Alberto Enrico Maraolo, Valentina Viaggi, Riccardo Pol, Massimiliano Fabbiani, Francesca Montagnani, Antonio Lovecchio, Roberto Luzzati, and Stefano Di Bella. 2020. "Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies" Antibiotics 9, no. 8: 500. https://doi.org/10.3390/antibiotics9080500
APA StyleAntonello, R. M., Principe, L., Maraolo, A. E., Viaggi, V., Pol, R., Fabbiani, M., Montagnani, F., Lovecchio, A., Luzzati, R., & Di Bella, S. (2020). Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics, 9(8), 500. https://doi.org/10.3390/antibiotics9080500