Post-Antibiotic Effect of Ampicillin and Levofloxacin to Escherichia coli and Staphylococcus aureus Based on Microscopic Imaging Analysis
Abstract
:1. Introduction
2. Results
2.1. PAE of Ampicillin and Levofloxacin to E. coli ATCC 25922
2.2. PAE of Ampicillin and Levofloxacin to S. aureus ATCC 29213
3. Discussion
4. Materials and Methods
4.1. PAE Determination by Single Colony Analysis
4.2. Single Colony Analysis by Image Processing
4.3. Bacterial Strain and Sample Preparation
4.4. Fabrication of the Microfabricated Culture Chip
4.5. Quality Control Test
4.6. Antibiotic Removal Validation Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levy, S.B.; Bonnie, M. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Cervera, C.; van Delden, C.; Gavaldà, J.; Welte, T.; Akova, M.; Carratalà, J. Multidrug-resistant bacteria in solid organ transplant recipients. Clin. Microbiol. Infect. 2014, 20, 49–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coussement, J.; Scemla, A.; Abramowicz, D.; Nagler, E.V.; Webster, A.C. Antibiotics for asymptomatic bacteriuria in kidney transplant recipients. Cochrane Database Syst. Rev. 2018, 2, CD011357. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanberger, H.; Nilsson, L.E.; Kihlström, E.; Maller, R. Postantibiotic effect of beta-lactam antibiotics on Escherichia coli evaluated by bioluminescence assay of bacterial ATP. Antimicrob. Agents Chemother. 1990, 34, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, S.; Vogelman, B.; Craig, W.A. Decreased bactericidal activity during the period of the postantibiotic effect. J. Antimicrob. Chemother. 1994, 34, 921–930. [Google Scholar] [CrossRef]
- MacKenzie, F.M.; Gould, I.M. The post-antibiotic effect. J. Antimicrob. Chemother. 1993, 32, 519–537. [Google Scholar] [CrossRef]
- Hanberger, H.; Nilsson, L.E.; Maller, R.; Nilsson, M. Pharmacodynamics of beta-lactam antibiotics on gram-negative bacteria: Initial killing, morphology and postantibiotic effect. Scand. J. Infect. Dis. Suppl. 1990, 74, 118–123. [Google Scholar]
- Hanberger, H.; Svensson, E.; Nilsson, L.E.; Nilsson, M. Control-related effective regrowth time and post-antibiotic effect of meropenem on gram-negative bacteria studied by bioluminescence and viable counts. J. Antimicrob. Chemother. 1995, 35, 585–592. [Google Scholar] [CrossRef]
- Fang, W. A novel fluorometric method for evaluation of the postantibiotic effect of antibacterial drugs on mastitis-causing Staphylococcus aureus and Escherichia coli. J. Microbiol. Methods 1996, 26, 151–159. [Google Scholar] [CrossRef]
- Coates, A.R.M.; Halls, G.; Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 2011, 163, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahir, T.; Camacho, R.; Vitale, R.; Ruckebusch, C.; Hofkens, J.; Fauvart, M.; Michiels, J. High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Commun. Biol. 2019, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Libby, J.M. Postantibiotic effect in Escherichia coli determined with real-time metabolic monitoring. Antimicrob. Agents Chemother. 1998, 42, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Jung, Y.G.; Kim, J.; Kim, S.; Jung, Y.; Na, H.; Kwon, S. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 2013, 13, 280–287. [Google Scholar] [CrossRef]
- Choi, J.; Yoo, J.; Lee, M.; Kim, E.-G.; Lee, J.S.; Lee, S.; Joo, S.; Song, S.H.; Kim, E.-C.; Lee, J.C.; et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med. 2014, 6, 267ra174. [Google Scholar] [CrossRef]
- Choi, J.; Jeong, H.Y.; Lee, G.Y.; Han, S.; Han, S.; Jin, B.; Lim, T.; Kim, S.; Kim, D.Y.; Kim, H.C.; et al. Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Kumar Prajapati, A. Urinary Tract Infection in Diabetics. In Microbiology of Urinary Tract Infections—Microbial Agents and Predisposing Factors; IntechOpen: London, UK, 2019. [Google Scholar]
- Rostkowska, O.M.; Kuthan, R.; Burban, A.; Salińska, J.; Ciebiera, M.; Młynarczyk, G.; Durlik, M. Analysis of Susceptibility to Selected Antibiotics in Klebsiella pneumoniae, Escherichia coli, Enterococcus faecalis and Enterococcus faecium Causing Urinary Tract Infections in Kidney Transplant Recipients over 8 Years: Single-Center Study. Antibiotics 2020, 9, 284. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Chacón, J.M.; Möbius, W.; Harcombe, W.R. The spatial and metabolic basis of colony size variation. ISME J. 2018, 12, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Limbago, B. M100-S11, Performance standards for antimicrobial susceptibility testing. Clin. Microbiol. Newsl. 2001, 23, 49. [Google Scholar] [CrossRef]
- Stubbings, W.J.; Bostock, J.M.; Ingham, E.; Chopra, I. Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 2004, 54, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landman, D.; Quale, J.M. Management of infections due to resistant enterococci: A review of therapeutic options. J. Antimicrob. Chemother. 1997, 40, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.M.; Isberg, R.R. Defining heterogeneity within bacterial populations via single cell approaches. Bioessays 2016, 38, 782–790. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proma, F.H.; Shourav, M.K.; Choi, J. Post-Antibiotic Effect of Ampicillin and Levofloxacin to Escherichia coli and Staphylococcus aureus Based on Microscopic Imaging Analysis. Antibiotics 2020, 9, 458. https://doi.org/10.3390/antibiotics9080458
Proma FH, Shourav MK, Choi J. Post-Antibiotic Effect of Ampicillin and Levofloxacin to Escherichia coli and Staphylococcus aureus Based on Microscopic Imaging Analysis. Antibiotics. 2020; 9(8):458. https://doi.org/10.3390/antibiotics9080458
Chicago/Turabian StyleProma, Farjana Hanif, Mohiuddin Khan Shourav, and Jungil Choi. 2020. "Post-Antibiotic Effect of Ampicillin and Levofloxacin to Escherichia coli and Staphylococcus aureus Based on Microscopic Imaging Analysis" Antibiotics 9, no. 8: 458. https://doi.org/10.3390/antibiotics9080458
APA StyleProma, F. H., Shourav, M. K., & Choi, J. (2020). Post-Antibiotic Effect of Ampicillin and Levofloxacin to Escherichia coli and Staphylococcus aureus Based on Microscopic Imaging Analysis. Antibiotics, 9(8), 458. https://doi.org/10.3390/antibiotics9080458