Non-Tuberculous Mycobacteria in Respiratory Specimens of Patients with Obstructive Lung Diseases—Colonization or Disease?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
References
- Cowman, S.; van Ingen, J.; Griffith, D.E.; Loebinger, M.R. Non-Tuberculous mycobacterial pulmonary disease. Eur. Respir. J. 2019, 54, 1900250. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72 (Suppl. 2), ii1–ii64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohue, M.J. Increasing nontuberculous mycobacteria reporting rates and species diversity identified in clinical laboratory reports. BMC Infect. Dis. 2018, 18, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.M.; Davidson, J.A.; Anderson, L.F.; Lalor, M.K.; Kim, J.; Thomas, H.L.; Lipman, M.; Abubakar, I. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland 2007–2012. BMC Infect. Dis. 2016, 16, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ingen, J.; Hoefsloot, W.; Dekhuijzen, P.N.R.; Boeree, M.J.; van Soolingen, D. The changing pattern of clinical Mycobacterium avium isolation in Netherlands. Int. J. Tuberc. Lung Dis. 2010, 14, 1176–1180. [Google Scholar]
- Ringshausen, F.C.; Wagner, D.; de Roux, A.; Diel, R.; Hohmann, D.; Hickstein, L.; Welte, T.; Rademacher, J. Prevalence of non-tuberculous mycobacterial pulmonary disease, Germany 2009–2014. Emerg. Infect. Dis. 2016, 22, 1102–1105. [Google Scholar] [CrossRef]
- Prevots, D.R.; Loddenkemper, R.; Sotgiu, G.; Migliori, G.B. Nontuberculous mycobacterial pulmonary disease: An increasing burden with substantial costs. Eur. Respir. J. 2017, 49, 1700374. [Google Scholar] [CrossRef]
- Izumi, K.; Morimoto, K.; Hasegawa, N.; Uchimura, K.; Kawatsu, L.; Ato, M.; Mitarai, S. Epidemiology of adults and children treated for nontuberculous mycobacterial pulmonary disease in Japan. Ann. Am. Thorac. Soc. 2019, 16, 341–347. [Google Scholar] [CrossRef]
- Andrejak, C.; Nielsen, R.; Thomson, R.; Dahaut, P.; Sorensen, H.T.; Thomsen, R.W. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculosis mycobacteriosis. Thorax 2013, 68, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Gatheral, T.; Kumar, N.; Sansom, B.; Lai, D.; Nair, A.; Vlahos, I.; Baker, E. COPD-Related bronchiectasis; independent impact on disease course and outcomes. COPD 2014, 11, 605–614. [Google Scholar] [CrossRef]
- Brode, S.K.; Campitelli, M.A.; Kwong, J.C.; Lu, H.; Marchand-Austin, A.; Gershon, A.S.; Jamieson, F.B.; Marras, T.K. The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur. Respir. J. 2017, 50, 1700037. [Google Scholar] [CrossRef] [Green Version]
- Pyarali, F.F.; Schweitzer, M.; Bagley, V.; Salamo, O.; Guerrero, A.; Sharifi, A.; Campos, M.; Quartin, A.; Mirsaeidi, M. Increasing non-tuberculous mycobacteria infections in veterans with COPD and association with increased risk of mortality. Front. Med. 2018, 5, 311. [Google Scholar] [CrossRef] [PubMed]
- Liu, V.X.; Winthrop, K.L.; Lu, Y.; Sharifi, H.; Nasiri, H.U.; Ruoss, S.J. Association between inhaled corticosteroids use and pulmonary nontuberculous mycobacterial infection. Ann. Am. Thorac. Soc. 2018, 15, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Burkes, R.; Donohue, J.F. An update on the Global Initiative for Chronic obstructive Lung Disease 2017 Guidelines with a focus on classification and management of stable COPD. Respir. Care 2018, 63, 749–758. [Google Scholar] [CrossRef]
- Huang, C.-T.; Tsai, Y.-J.; Wu, H.-D.; Wang, J.-Y.; Yu, C.-J.; Lee, L.-N.; Yang, P.-C. Impact of nontuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 2012, 16, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.A.; Kim, S.; Jo, K.-W.; Shim, T.S. Natural history of Mycobacterium avium complex lung disease in untreated patients with stable course. Eur. Respir. J. 2017, 49, 1600537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szturmowicz, M.; Siemion-Szcześniak, I.; Wyrostkiewicz, D.; Klatt, M.; Brzezińska, S.; Zabost, A.; Lewandowska, A.; Filipczak, D.; Oniszh, K.; Skoczylas, A.; et al. Factors predisposing to non-tuberculous mycobacterial lung disease in the patients with respiratory isolates of non-tuberculous mycobacteria. Adv. Respir. Med. 2018, 86, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Adzic-Vukicevic, T.; Barac, A.; Blanka-Protic, A.; Laban-Lazovic, M.; Lukovic, B.; Škodrić-Trifunović, V.; Rubino, S. Clinical features of infection caused by non-tuberculous mycobacteria: 7 years’ experience. Infection 2018, 46, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bakula, Z.; Kościuch, J.; Safianowska, A.; Proboszcz, M.; Bielecki, J.; Van Ingen, J.; Krenke, R.; Jagielski, T. Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary disease. Respir. Med. 2018, 139, 91–100. [Google Scholar] [CrossRef]
- Jones, M.; Winthrop, K.L.; Nelson, S.D.; Duvall, S.L.; Patterson, O.V.; Nechodom, K.E.; Findley, K.E.; Radonovich, L.J.; Samore, M.H.; Fennelly, K.P. Epidemiology of nontuberculous mycobacterial infections in the U.S. Veterans Health Administration. PLoS ONE 2018, 13, e0197976. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 24 April 2020).
Factor | Total Population No. 36 | NTM-LD No. 17 | Colonization No. 19 | p |
---|---|---|---|---|
Gender Males/Females | 15/21 | 7/10 | 8/11 | 0.95 |
Age, mean (SD) | 65, 9 (11,6) | 65, 2 (11,1) | 66, 3 (12,2) | 0.85 |
BMI, mean (SD) | 24, 5 (4,8) | 21, 9 (3,8) | 26, 8 (4,5) | 0.001 |
≤22.5 No (%) | 14 (39) | 10 (59) | 4 (21) | 0.04 |
Smoking/pack-years median (range) | 20 (0–80) | 25 (0–50) | 20 (0–80) | 0.22 |
Inhaled CS No. (%) | 25 (69) | 12 (71) | 13 (68) | 0.82 |
Oral CS No. (%) | 5 (14) | 2 (12) | 3 (16) | 0.89 |
Spirometry (median, range) | ||||
FEV1%/FVC | 0.51 (0.3–0.86) | 0.45 (0.3–0.75) | 0.56 (0.41–0.86) | 0.09 |
FEV1% pred. | 50 (22–123) | 45 (22–123) | 57 (34–110) | 0.41 |
FVC% pred. | 77.5 (49–129) | (52–129) | (49–106) | 0.48 |
Weight loss > 5% No (%) | 6 (17) | 4 (24) | 2 (11) | 0.38 |
Elevated body temperature (>38 °C) No. (%) | 11 (31) | 9 (53) | 2 (11) | 0.02 |
Dyspnea No. (%) | 26 (72) | 13 (77) | 13 (68) | 0.87 |
Haemoptysis No. (%) | 8 (22) | 4 (24) | 4 (21) | 0.82 |
Expectoration No. (%) | 17 (47) | 7 (41) | 10 (53) | 0.72 |
Bronchiectasis No. (%) | 16 (44) | 7 (41) | 11 (58) | 0.5 |
Hypothyreosis No. (%) | 7 (19) | 3 (18) | 4 (21) | 0.87 |
Past neoplastic disease No. (%) | 6 (17) | 4 (24) | 2 (11) | 0.55 |
Diabetes No. (%) | 6 (17) | 5 (29) | 1 (5) | 0.14 |
Type of Chest CT Changes | Total Population No. 36 | NTM-LD No. 17 | Colonization No. 19 | p |
---|---|---|---|---|
Nodular/bronchiectasis No. (%) | 17 (47) | 8 (47) | 9 (47) | 0.03 |
Infiltrations/cavities No. (%) | 6 (17) | 6 (35) | 0 (0) | |
Non-specific No. (%) | 13 (36) | 3 (18) | 10 (57) | |
Post tuberculous lesions No. (%) | 19 (53) | 10 (59) | 9 (47) | 0.72 |
Species | Total Population No. 36 | NTM-LD No. 17 | Colonization No. 19 | p |
---|---|---|---|---|
M. avium | 14 (39) | 9 (60) | 5 (26) | M. gordonae versus remaining species 0.018 |
M. gordonae | 7 (19) | 0 (0) | 7 (37) | |
M. kansasii | 6 (17) | 3 (18) | 3 (16) | |
M. xenopi | 6 (17) | 3 (18) | 3 (16) | |
M. fortuitum | 2 (6) | 1 (6) | 1 (5) | |
M. intracellulare | 1 (3) | 1 (3) | 0 (0) | |
P. aeruginosa | 5 (14) | 1 (3) | 4 (21) | 0.4 |
Other Gram (-) | 9 (25) | 4 (24) | 5 (26) | 0.85 |
A. fumigatus | 6 (17) | 3 (18) | 3 (16) | 0.77 |
Candida sp. | 9 (25) | 5 (29) | 4 (22) | 0.85 |
Factor | HR | 95%CI | p |
---|---|---|---|
BMI | 3.55 | 2.84–4.12 | 0.001 |
BMI < 22.5 | 2.45 | 1.16–3.85 | 0.002 |
Elevated body temperature | 3.02 | 2.24–4.96 | 0.005 |
CT infiltrative-cavitary type | 3.38 | 2.54–5.38 | 0.002 |
NTM other than M. gordonae | 3.06 | 2.92–4.45 | 0.004 |
Probability scoring | 5.75 | 4.19–6.64 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szturmowicz, M.; Oniszh, K.; Wyrostkiewicz, D.; Radwan-Rohrenschef, P.; Filipczak, D.; Zabost, A. Non-Tuberculous Mycobacteria in Respiratory Specimens of Patients with Obstructive Lung Diseases—Colonization or Disease? Antibiotics 2020, 9, 424. https://doi.org/10.3390/antibiotics9070424
Szturmowicz M, Oniszh K, Wyrostkiewicz D, Radwan-Rohrenschef P, Filipczak D, Zabost A. Non-Tuberculous Mycobacteria in Respiratory Specimens of Patients with Obstructive Lung Diseases—Colonization or Disease? Antibiotics. 2020; 9(7):424. https://doi.org/10.3390/antibiotics9070424
Chicago/Turabian StyleSzturmowicz, Monika, Karina Oniszh, Dorota Wyrostkiewicz, Piotr Radwan-Rohrenschef, Dorota Filipczak, and Anna Zabost. 2020. "Non-Tuberculous Mycobacteria in Respiratory Specimens of Patients with Obstructive Lung Diseases—Colonization or Disease?" Antibiotics 9, no. 7: 424. https://doi.org/10.3390/antibiotics9070424
APA StyleSzturmowicz, M., Oniszh, K., Wyrostkiewicz, D., Radwan-Rohrenschef, P., Filipczak, D., & Zabost, A. (2020). Non-Tuberculous Mycobacteria in Respiratory Specimens of Patients with Obstructive Lung Diseases—Colonization or Disease? Antibiotics, 9(7), 424. https://doi.org/10.3390/antibiotics9070424