Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield and Chemical Compositions of Essential Oils
2.2. Antimicrobial Activities
2.3. Antitrichomonas Activity
2.4. Cytotoxicity and Antiviral Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction of the Essential Oils
4.3. Analysis of the Essential Oils
4.4. Antimicrobial Activities
4.5. Determination of Minimum Inhibitory Concentrations (MIC) and Minimum Lethal Concentration (MLC)
4.6. Antitrichomonas Activity
4.7. Cells and Cytotoxicity Assays
4.8. Viruses and Antiviral Assay
4.9. Statistical Analysis and Linear Regression Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Enna, S.J.; Bylund, D.B. xPharm: The Comprehensive Pharmacology Reference; Elsevier: Boston, MA, USA, 2008; ISBN 978-0-08-055232-3. [Google Scholar]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus 2017, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Le, N.T.; Ho, D.V.; Doan, T.Q.; Le, A.T.; Raal, A.; Usai, D.; Madeddu, S.; Marchetti, M.; Usai, M.; Rapelli, P.; et al. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics 2020, 9, 1–12. [Google Scholar]
- Chaves-López, C.; Usai, D.; Donadu, M.G.; Serio, A.; González-Mina, R.T.; Simeoni, M.C.; Molicotti, P.; Zanetti, S.; Pinna, A.; Paparella, A. Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro. Food Funct. 2018, 9, 2725–2734. [Google Scholar] [CrossRef]
- Di Gennaro, F.; Pizzol, D.; Marotta, C.; Antunes, M.; Racalbuto, V.; Veronese, N.; Smith, L. Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. Int. J. Environ. Res. Public Health 2020, 17, 2690. [Google Scholar] [CrossRef] [Green Version]
- Puenpa, J.; Wanlapakorn, N.; Vongpunsawad, S.; Poovorawan, Y. The History of Enterovirus A71 Outbreaks and Molecular Epidemiology in the Asia-Pacific Region. J. Biomed. Sci. 2019, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complement. Altern. Med. 2016, 2016, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.; Ho, D.V.; Doan, T.Q.; Le, A.T.; Raal, A.; Usai, D.; Madeddu, S.; Marchetti, M.; Usai, M.; Rappelli, P.; et al. In vitro Antimicrobial Activity of Essential Oil Extracted from Leaves of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le in Vietnam. Plants 2020, 9, 1–14. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods - A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Saha, K.; Sinha, R.K.; Sinha, S. Distribution, Cytology, Genetic Diversity and Molecular phylogeny of selected species of Zingiberaceae—A Review. Feddes Repert. 2020, 131, 58–68. [Google Scholar] [CrossRef]
- Kuete, V. Medicinal Spices and Vegetables from Africa: Therapeutic Potential against Metabolic, Inflammatory, Infectious and Systemic Diseases; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128094419. [Google Scholar]
- Sharma, G.J.; Chirangini, P.; Kishor, R. Gingers of Manipur: Diversity and potentials as bioresources. Genet. Resour. Crop Evol. 2011, 58, 753–767. [Google Scholar] [CrossRef]
- Tan, J.W.; Israf, D.A.; Tham, C.L. Major bioactive compounds in essential oils extracted from the rhizomes of Zingiber zerumbet (L) Smith: A mini-review on the anti-allergic and immunomodulatory properties. Front. Pharmacol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhan, S.E.; Ford, C.T.; Tepper, D. Zingiberaceae extracts for pain: A systematic review and meta-analysis. Nutr. J. 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewlings, S.; Kalman, D. Curcumin: A Review of Its’ Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Zahara, M.; Hasanah, M.; Zalianda, R. Identification of Zingiberaceae as medicinal plants in Gunung Cut Village, Aceh Barat Daya, Indonesia. J. Trop. Hortic. 2018, 1, 24–28. [Google Scholar] [CrossRef]
- Sukari, M.A.; Sharif, N.W.M.; Yap, A.L.C.; Tang, S.W.; Neoh, B.K.; Rahmani, M.; Ee, G.C.L.; Taufiq-Yap, Y.H.; Yusof, U.K. Chemical Constituents Variations of Essential Oils from Rhizomes of Four Zingiberaceae Species. Malays. J. Anal. Sci. 2008, 12, 638–644. [Google Scholar]
- Jantan, I.B.; Yassin, M.S.M.; Chin, C.B.; Chen, L.L.; Sim, N.L. Antifungal Activity of the Essential Oils of Nine Zingiberaceae Species. Pharm. Biol. 2003, 41, 392–397. [Google Scholar] [CrossRef]
- Gurib-Fakim, A.; Maudarbaccus, N.; Leach, D.; Doimo, L.; Wohlmuth, H. Essential oil composition of Zingiberaceae species from Mauritius. J. Essent. Oil Res. 2002, 14, 271–273. [Google Scholar] [CrossRef]
- Balaji, S.; Chempakam, B. Anti-bacterial Effect of Essential Oils Extracted from Selected Spices of Zingiberaceae. Nat. Prod. J. 2017, 8, 70–76. [Google Scholar] [CrossRef]
- Oktavianawati, I.; Kurniati, H.I.; Maghfiroh, K.; Hanifah, N.; Handayani, W.; Winata, I.N.A. Essential oils from rhizhomes of five Zingiberaceae species in Meru Betiri National Park. Aip Conf. Proc. 2018, 2026, 1–9. [Google Scholar]
- Bellik, Y. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pac. J. Trop. Dis. 2014, 4, 40–44. [Google Scholar] [CrossRef]
- Leong-Škorničková, J.; Newman, M. Gingers of Cambodia, Laos and Vietnam; Singapore Botanic Gardens, National Parks Board in association with Royal Botanic Garden Edinburgh and Pha Tad Ke Botanical Garden: Singapore, 2015; ISBN 978-981-09-6380-4. [Google Scholar]
- Chau, D.T.M.; Dai, D.N.; Hoi, T.M.; Thai, T.H.; Thang, T.D.; Ogunwande, I.A. Essential Oil Constituents of Etlingera yunnanensis and Hornstedtia sanhan grown in Vietnam. Nat. Prod. Commun. 2015, 10, 365–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashim, S.E.; Sirat, H.M.; Yen, K.H. Chemical compositions and antimicrobial activity of the essential oils of Hornstedtia havilandii (Zingiberaceae). Nat. Prod. Commun. 2014, 9, 119–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashim, S.E.; Sirat, H.M. Chemical composition, antioxidant, antimicrobial, and α-glucosidase activities of essential oils of Hornstedtia scyphifera (Zingiberaceae). Nat. Prod. Commun. 2018, 13, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Jani, N.A.; Sirat, H.M.; Ali, N.A.M.; Aziz, A. Chemical compositions of the rhizome, leaf and stem oils from malaysian Hornstedtia leonurus. Nat. Prod. Commun. 2013, 8, 513–514. [Google Scholar] [CrossRef] [Green Version]
- Leong-Škorničková, J.; Nguyễn, Q.B.; Trần, H.Đ.; Eliška, Z. Etlingera poulsenii and Hornstedtia bella (Zingiberaceae: Alpinieae), two new species from central Vietnam. Gard. Bull. Singap. 2016, 68, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Lucero, M.E.; Estell, R.E.; Fredrickson, E.L. The Essential Oil Composition of Psorothamnus scoprius (A. Gray) Rydb. J. Essent. Oil Res. 2003, 15, 108–111. [Google Scholar] [CrossRef]
- Yu, J.Q.; Liao, Z.X.; Cai, X.Q.; Lei, J.C.; Zou, G.L. Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ. Toxicol. Pharmacol. 2007, 23, 162–167. [Google Scholar] [CrossRef]
- Paolini, J.; Costa, J.; Bernardini, A. Analysis of the Essential Oil from the Roots of Eupatorium cannabinum subsp. corsicum (L.) by GC, GC-MS and 13C-NMR. Phytochem. Anal. 2007, 18, 235–244. [Google Scholar]
- Bader, A.; Caponi, C.; Cioni, P.L.; Flamini, G.; Morelli, I. Composition of the essential oil of Ballota undulata, B. nigra ssp. foetida and B. saxatilis. Flavour Fragr. J. 2003, 18, 502–504. [Google Scholar] [CrossRef]
- Adams, R.P.; Nguyen, S. Infra-specific variation in Juniperus deppeana and F. Sperryi in the Davis Mountains of Texas: Variation in leaf essential oils and random amplified polymorphic DNAS (RAPDS). Phytologia 2005, 87, 96–108. [Google Scholar]
- Duquesnoy, E.; Dinh, N.H.; Castola, V.; Casanova, J. Composition of a pyrolytic oil from Cupressus funebris Endl. of Vietnamese origin. Flavour Fragr. J. 2006, 21, 453–457. [Google Scholar] [CrossRef]
- bin Ahmad, F.; bin Jantan, I. Chemical constituents of the essential oils of Goniothalamus uvariodes king. Flavour Fragr. J. 2003, 18, 128–130. [Google Scholar] [CrossRef]
- Mazzarello, V.; Donadu, M.G.; Ferrari, M.; Piga, G.; Usai, D.; Zanetti, S.; Sotgiu, M.A. Treatment of Acne With a Combination of Propolis, Tea Tree Oil, and Aloe vera Compared to Erythromycin Cream: Two Double-Blind Investigations. Clin. Pharmacol. 2018, 10, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Amorese, V.; Donadu, M.; Usai, D.; Sanna, A.; Milia, F.; Pisanu, F.; Molicotti, P.; Zanetti, S.; Doria, C. In vitro activity of essential oils against Pseudomonas aeruginosa isolated from infected hip implants. J. Infect. Dev. Ctries. 2018, 12, 996–1001. [Google Scholar] [CrossRef]
- Bua, A.; Usai, D.; Donadu, M.G.; Delgado Ospina, J.; Paparella, A.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Zanetti, S.; Molicotti, P. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms. Nat. Prod. Res. 2018, 32, 2869–2871. [Google Scholar] [CrossRef]
- Martínez, S.; Madrid, J.; Hernández, F.; Megías, M.D.; Sotomayor, J.A.; Jordán, M.J. Effect of thyme essential oils (Thymus hyemalis and Thymus zygis) and monensin on in vitro ruminal degradation and volatile fatty acid production. J. Agric. Food Chem. 2006, 54, 6598–6602. [Google Scholar] [CrossRef]
- Donadu, M.; Usai, D.; Pinna, A.; Porcu, T.; Mazzarello, V.; Fiamma, M.; Marchetti, M.; Cannas, S.; Delogu, G.; Zanetti, S.; et al. In vitro activity of hybrid lavender essential oils against multidrug resistant strains of Pseudomonas aeruginosa. J. Infect. Dev. Ctries. 2018, 12, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils—Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781420063158. [Google Scholar]
- Salehi Shanjani, P.; Mirza, M.; Calagari, M.; Adams, R.P. Effects drying and harvest season on the essential oil composition from foliage and berries of Juniperus excelsa. Ind. Crop. Prod. 2010, 32, 83–87. [Google Scholar] [CrossRef]
- Zouari-Bouassida, K.; Trigui, M.; Makni, S.; Jlaiel, L.; Tounsi, S. Seasonal Variation in Essential Oils Composition and the Biological and Pharmaceutical Protective Effects of Mentha longifolia Leaves Grown in Tunisia. Biomed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.C. Phytochemical variation within a species. In Trease and Evans’ Pharmacognosy; Saunders Elsevier: Edinburgh, UK, 2009; pp. 106–116. ISBN 9780702029332. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Ali, N.; Chhetri, B.; Dosoky, N.; Shari, K.; Al-Fahad, A.; Wessjohann, L.; Setzer, W. Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils. Medicines 2017, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-Caryophyllene and germacrene-D. Quim. Nova 2011, 34, 1550–1555. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Almeida, J.R.G.; Facanali, R.; Vieira, M.A.R.; Marques, M.O.M.; Lúcio, A.S.S.C.; De Oliveira Lima, E.; De Fátima Agra, M.; Barbosa-Filho, J.M. Composition and antimicrobial activity of the leaf essential oils of Duguetia gardneriana mart. and Duguetia moricandiana mart. (Annonaceae). J. Essent. Oil Res. 2010, 22, 275–278. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Zomorodian, K.; Saharkhiz, M.J.; Rahimi, M.J.; Bandegi, A.; Shekarkhar, G.; Bandegani, A.; Pakshir, K.; Bazargani, A. Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria multiflora. Pharmacogn. Mag. 2011, 7, 53–59. [Google Scholar]
- Halcón, L.; Milkus, K. Staphylococcus aureus and wounds: A review of tea tree oil as a promising antimicrobial. Am. J. Infect. Control 2004, 32, 402–408. [Google Scholar] [CrossRef]
- Hani, U.; Shivakumar, H.; Vaghela, R.M.; Osmani, R.; Shrivastava, A. Candidiasis: A Fungal Infection- Current Challenges and Progress in Prevention and Treatment. Infect. Disord. Drug Targets 2015, 15, 42–52. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R. Infection and Drug Resistance Dovepress Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkowska, K.; Nowicka-Krawczyk, P.; Kunicka-Styczynska, A. Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells. Molecules 2019, 24, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. J. Antimicrob. Chemother. 1998, 42, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Melaleuca alternifolia (tea tree) oil inhibits germ tube formation by Candida albicans. Med. Mycol. 2000, 38, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Devkatte, A.N.; Zore, G.B.; Karuppayil, S.M. Potential of plant oils as inhibitors of Candida albicans growth. Fems Yeast Res. 2005, 5, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Cannas, S.; Usai, D.; Tardugno, R.; Benvenuti, S.; Pellati, F.; Zanetti, S.; Molicotti, P. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils. Nat. Prod. Res. 2016, 30, 332–339. [Google Scholar] [CrossRef]
- Donadu, M.G.; Usai, D.; Marchetti, M.; Usai, M.; Mazzarello, V.; Molicotti, P.; Montesu, M.A.; Delogu, G.; Zanetti, S. Antifungal activity of oils macerates of North Sardinia plants against Candida species isolated from clinical patients with candidiasis. Nat. Prod. Res. 2019, 1–5. [Google Scholar] [CrossRef]
- Wang, S.M.; Liu, C.C. Update of enterovirus 71 infection: Epidemiology, pathogenesis and vaccine. Expert Rev. Anti. Infect. Ther. 2014, 12, 447–456. [Google Scholar] [CrossRef]
- Bouchemal, K.; Bories, C.; Loiseau, P.M. Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clin. Microbiol. Rev. 2017, 30, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Rowley, J.; Hoorn, S.V.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef]
- Cudmore, S.L.; Delgaty, K.L.; Hayward-McClelland, S.F.; Petrin, D.P.; Garber, G.E. Treatment of Infections Caused by Metronidazole-Resistant Trichomonas vaginalis. Clin. Microbiol. Rev. 2004, 17, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scopel, M.; dos Santos, O.; Frasson, A.P.; Abraham, W.R.; Tasca, T.; Henriques, A.T.; Macedo, A.J. Anti-Trichomonas vaginalis activity of marine-associated fungi from the South Brazilian Coast. Exp. Parasitol. 2013, 133, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaha, C.; Duchêne, M.; Aspöck, H.; Walochnik, J. In vitro activity of hexadecylphosphocholine (miltefosine) against metronidazole-resistant and -susceptible strains of Trichomonas vaginalis. J. Antimicrob. Chemother. 2006, 57, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krashin, J.W.; Koumans, E.H.; Bradshaw-Sydnor, A.C.; Braxton, J.R.; Secor, W.E.; Sawyer, M.K.; Markowitz, L.E. Trichomonas vaginalis prevalence, incidence, risk factors and antibiotic-resistance in an adolescent population. Sex. Transm. Dis. 2010, 37, 440–444. [Google Scholar] [CrossRef]
- Akbari, Z.; Dastan, D.; Maghsood, A.H.; Fallah, M.; Matini, M. Investigation of In vitro Efficacy of Marrubium vulgare L. Essential Oil and Extracts Against Trichomonas vaginalis. Zahedan J. Res. Med. Sci. 2018, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bala, V.; Chhonker, Y.S. Recent developments in anti-Trichomonas research: An update review. Eur. J. Med. Chem. 2018, 143, 232–243. [Google Scholar] [CrossRef]
- Mehriardestani, M.; Aliahmadi, A.; Toliat, T.; Rahimi, R. Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis activity. Biomed. Pharmacother. 2017, 88, 885–893. [Google Scholar] [CrossRef]
- Ezz Eldin, H.M.; Badawy, A.F. In vitro anti-Trichomonas vaginalis activity of Pistacia lentiscus mastic and Ocimum basilicum essential oil. J. Parasit. Dis. 2015, 39, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Moon, T.; Wilkinson, J.M.; Cavanagh, H.M.A. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol. Res. 2006, 99, 722–728. [Google Scholar] [CrossRef]
- Dai, M.; Peng, C.; Peng, F.; Xie, C.; Wang, P.; Sun, F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. Pharm. Biol. 2016, 54, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Vietnamese Pharmacopoeia; Medical Publishing House: Hanoi, Vietnam, 2017; ISBN 1538-3636; 0003-990X.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 0931710855. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Ninth Edition: M07-A9; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Thi Trung Thu, T.; Margarita, V.; Cocco, A.R.; Marongiu, A.; Dessì, D.; Rappelli, P.; Fiori, P.L. Trichomonas vaginalis Transports Virulent Mycoplasma hominis and Transmits the Infection to Human Cells after Metronidazole Treatment: A Potential Role in Bacterial Invasion of Fetal Membranes and Amniotic Fluid. J. Pregnancy 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nu, P.A.T.; Nguyen, V.Q.H.; Cao, N.T.; DessÌ, D.; Rappelli, P.; Fiori, P.L. Prevalence of Trichomonas vaginalis infection in symptomatic and asymptomatic women in central Vietnam. J. Infect. Dev. Ctries. 2015, 9, 655–660. [Google Scholar]
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Chan, Y.L.; Tsai, L.W.; Li, T.L.; Wu, C.J. Prevention of human enterovirus 71 infection by kappa carrageenan. Antivir. Res. 2012, 95, 128–134. [Google Scholar] [CrossRef] [PubMed]
No. | RT | a KI | Components | b % ± SD | c IM | d Ref. | e CID | ||
---|---|---|---|---|---|---|---|---|---|
Leaves | Rhizomes | Whole Plant | |||||||
1 | 18.21 | 939 | α-Pinene | 1.43 ± 0.09 | 4.96 ± 0.11 | 8.75 ± 0.15 | Std | 6654 | |
2 | 19.15 | 954 | Camphene | 4.28 ± 0.09 | 1.22 ± 0.05 | Std | 6616 | ||
3 | 20.71 | 979 | β-Pinene | 4.61 ± 0.10 | 16.07 ± 0.37 | 25.52 ± 0.43 | Std | 14896 | |
4 | 23.43 | 1029 | Limonene | 0.17 ± 0.02 | 1.45 ± 0.11 | 1.49 ± 0.09 | Std | 22311 | |
5 | 23.63 | 1031 | 1,8-Cineole | 0.90 ± 0.07 | 2.03 ± 0.10 | 10.50 ± 0.11 | Std | 2758 | |
6 | 29.82 | 1149 | Camphor | - | 1.56 ± 0.07 | - | Std | 2537 | |
7 | 30.22 | 1150 | Camphene hydrate | - | 0.29 ± 0.03 | - | MS-RI | [30] | 101680 |
8 | 31.05 | 1169 | Borneol | - | 0.97 ± 0.06 | - | Std | 64685 | |
9 | 31.44 | 1177 | Terpinen-4-ol | - | 0.31 ± 0.02 | - | Std | 11230 | |
10 | 32.14 | 1189 | α-Terpineol | 0.11 ± 0.01 | 1.46 ± 0.13 | 0.97 ± 0.09 | MS-RI | [31] | 17100 |
11 | 36.43 | 1289 | Bornyl acetate | - | 0.88 ± 0.05 | - | Std | 6448 | |
12 | 38.45 | 1347 | 1,5,5-Trimethyl-6-methylene-cyclohexene | 0.16 ± 0.01 | - | - | MS | 578237 | |
13 | 39.01 | 1351 | α-Cubebene | 0.08 ± 0.01 | - | - | Std | 84609 | |
14 | 39.9 | 1375 | α-Ylangene | 0.12 ± 0.02 | - | - | MS | 442409 | |
15 | 40.13 | 1377 | α-Copaene | 0.53 ± 0.10 | 0.43 ± 0.09 | - | Std | 442355 | |
16 | 40.46 | 1388 | β-Bourbonene | 0.39 ± 0.07 | - | - | MS | 62566 | |
17 | 40.55 | 1391 | β-Elemene | 0.27 ± 0.04 | 0.32 ± 0.08 | - | MS | 6918391 | |
18 | 41.28 | 1410 | α-Gurjunene | 0.08 ± 0.01 | 2.39 ± 0.017 | 1.47 ± 0.14 | MS | 15560276 | |
19 | 41.77 | 1419 | E-β-Caryophyllene | 7.32 ± 0.35 | 4.08 ± 0.08 | 5.56 ± 0.23 | Std | 5281515 | |
20 | 42.02 | 1432 | β-Copaene | 0.29 ± 0.01 | - | - | Std | 57339298 | |
21 | 42.34 | 1441 | Aromadendrene | 0.42 ± 0.03 | - | - | MS | 91354 | |
22 | 42.49 | 1441 | cis-α-Ambrinol | 0.34 ± 0.02 | - | - | MS | 24858722 | |
23 | 42.55 | 1448 | 10s,11s-Himachala-3(12),4-diene | 0.37 ± 0.02 | - | - | MS | 14038471 | |
24 | 42.64 | 1450 | cis-Muurola-3,5-diene | 0.55 ± 0.09 | 0.31 ± 0.04 | - | MS | 51351708 | |
25 | 42.74 | 1454 | trans-Muurola-3,5-diene | 1.06 ± 0.07 | - | - | MS | 102512379 | |
26 | 42.91 | 1455 | α-Humulene | 6.48 ± 0.19 | 9.68 ± 0.09 | 5.64 ± 0.21 | Std | 5281520 | |
27 | 43.05 | 1460 | Alloaromadendrene | 2.26 ± 0.04 | 0.29 ± 0.02 | 1.08 ± 0.04 | MS | 91354 | |
28 | 43.44 | 1480 | γ-Muurolene | 3.79 ± 0.06 | 1.42 ± 0.04 | 1.50 ± 0.04 | MS-RI | [32] | 12313020 |
29 | 43.45 | 1483 | α-Elemene | 0.43 ± 0.01 | - | MS | 10583 | ||
30 | 43.59 | 1485 | α-Amorphene | 1.33 ± 0.04 | - | 1.09 ± 0.05 | MS | 101708 | |
31 | 43.75 | 1485 | Germacrene D | 17.47 ± 0.17 | 1.08 ± 0.03 | 5.84 ± 0.013 | MS | 5317570 | |
32 | 43.83 | 1490 | β-Selinene | 7.11 ± 0.09 | - | MS | 442393 | ||
33 | 43.84 | 1493 | δ-Selinene | 0.78 ± 0.04 | - | 0.36 ± 0.02 | MS | 10123 | |
34 | 43.99 | 1496 | Valencene | 0.37 ± 0.01 | - | MS | 9855795 | ||
35 | 44.02 | 1496 | Ledene (viridiflorene) | 11.13 ± 0.08 | - | 5.11 ± 0.10 | MS-RI | [33] | 10910653 |
36 | 44.07 | 1498 | α-Selinene | 2.20 ± 0.14 | - | Std | 10856614 | ||
37 | 44.08 | 1500 | α-Muurolene | 2.89 ± 0.07 | - | 0.74 ± 0.04 | Std | 12306047 | |
38 | 44.26 | 1502 | Epizonarene | 0.78 ± 0.04 | - | - | MS-RI | [34] | 595385 |
39 | 44.34 | 1512 | δ-Amorphene | 1.92 ± 0.12 | - | - | MS | 10223 | |
40 | 44.39 | 1512 | cis-γ-Cadinene | 0.84 ± 0.05 | 1.07 ± 0.02 | - | MS | 6429304 | |
41 | 44.42 | 1514 | γ-Cadinene | 1.73 ± 0.07 | - | - | MS | 6432404 | |
42 | 44.55 | 1522 | 7-epi-α-Selinene | 1.48 ± 0.13 | - | 0.54 ± 0.04 | MS | 10726905 | |
43 | 44.66 | 1523 | δ-Cadinene | 3.84 ± 0.11 | 1.07 ± 0.9 | 2.87 ± 0.11 | MS | 441005 | |
44 | 44.77 | 1529 | trans-Calamenene | 0.41 ± 0.03 | 0.30 ± 0.02 | - | MS | 6429022 | |
45 | 44.82 | 1530 | Zonarene | 0.86 ± 0.09 | - | - | MS-RI | [34] | 6428488 |
46 | 45.13 | 1532 | Epiglobulol | 0.09 ± 0.01 | 6.48 ± 0.09 | - | MS | 11858788 | |
47 | 45.22 | 1550 | cis-Muurola-5-en-4-β-ol | 0.27 ± 0.01 | - | - | MS | 91749819 | |
48 | 45.36 | 1566 | β-Calacorene | 0.14 ± 0.02 | - | - | MS | 529621 | |
49 | 45.94 | 1568 | Cadala-1(10),3,8,triene | 0.11 ± 0.02 | - | - | MS | 593889 | |
50 | 46.27 | 1571 | Palustrol | 0.47 ± 0.04 | - | - | MS-RI | [35] | 110745 |
51 | 46.45 | 1578 | Spathulenol | 2.55 ± 0.08 | 1.21 ± 0.9 | 3.22 ± 0.17 | Std | 92231 | |
52 | 46.62 | 1583 | Caryophyllene oxyde | - | 0.88 ± 0.03 | - | MS | 14350 | |
53 | 46.71 | 1585 | Globulol | 2.40 ± 0.10 | 0.71 ± 0.04 | 2.48 ± 0.09 | MS | 12304985 | |
54 | 46.95 | 1593 | Viridiflorol (ledol) | 1.12 ± 0.08 | 0.46 ± 0.06 | 1.30 ± 0.09 | MS | 11996452 | |
55 | 47.22 | 1596 | β-Eudesmol | 1.28 ± 0.07 | 0.40 ± 0.03 | 1.06 ± 0.04 | MS | 91457 | |
56 | 47.35 | 1608 | α-Humulene epoxide II | 0.17 ± 0.01 | 2.10 ± 0.04 | - | MS | 5363694 | |
57 | 47.71 | 1616 | Epicubenol | 1.31 ± 0.04 | 0.78 ± 0.02 | 1.27 ± 0.07 | MS-RI | [36] | 12046149 |
58 | 47.86 | 1620 | Isospathulenol | 1.01 ± 0.02 | - | 1.07 ± 0.02 | MS-RI | [37] | 14038848 |
59 | 47.92 | 1625 | Guaiol | - | 0.57 ± 0.01 | - | Std | 227829 | |
60 | 48.04 | 1640 | α-epi-Cadinol | 2.10 ± 0.08 | 0.31 ± 0.02 | - | Std | 12302222 | |
61 | 48.10 | 1640 | α-epi-Muurolol | 1.10 ± 0.04 | 2.17 ± 0.12 | 1.31 ± 0.09 | Std | 3084331 | |
62 | 48.15 | 1642 | Cubenol | 0.58 ± 0.02 | - | - | Std | 519857 | |
63 | 48.25 | 1642 | γ-Cadinol | - | 1.42 ± 0.06 | - | Std | 91753503 | |
64 | 48.41 | 1654 | α-Cadinol | 3.53 ± 0.03 | 1.25 ± 0.04 | 4.24 ± 0.05 | Std | 10398656 | |
65 | 48.47 | 1654 | β-Cadinol | - | 0.43 ± 0.01 | - | Std | 12302231 | |
66 | 48.52 | 1682 | Ledene-oxide-(II) | 0.84 ± 0.02 | 1.21 ± 0.04 | - | MS | 534497 | |
67 | 48.55 | 1684 | Eudesm-7(11)-en-4-ol | - | 3.83 ± 0.08 | - | MS | 6432454 | |
68 | 50.62 | 1927 | 8-(2-Acetyloxiran-2-yl)-6,6-dimethylocta-3,4-dien-2-one | - | 1.59 ± 0.04 | - | MS | 539293 | |
69 | 52.07 | 1939 | 2-Methyl-4(2,6,6-trimethyl ciclohen-1-enyl)but-2-en-1-ol | - | 0.50 ± 0.02 | - | MS | 569166 | |
70 | 60.49 | 2184 | Z-Retinal | - | 2.14 ± 0.05 | - | MS | 6436082 | |
Total | 96.26 | 95.25 | 96.2 | ||||||
Monoterpene hydrocarbons | 7.27 | 28.79 | 36.98 | ||||||
Oxygenated monoterpenes | 0.11 | 5.47 | 11.47 | ||||||
Sesquiterpene hydrocarbons | 69.72 | 32.55 | 31.80 | ||||||
Oxygenated sesquiterpenes | 18.82 | 24.21 | 15.95 | ||||||
Diterpenes | 0 | 2.14 | - | ||||||
Others | 0.34 | 2.09 | - |
Strains | Leaves Oil | Rhizomes Oil | Whole Plant Oil | |||
---|---|---|---|---|---|---|
MIC (% v/v) | MLC (% v/v) | MIC (% v/v) | MLC (% v/v) | MIC (% v/v) | MLC (% v/v) | |
Gram-Positive Bacteria | ||||||
Staphylococcus aureus ATCC 43300 | 2 ± 0.5 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 4 ± 0.5 | 4 ± 0.5 |
Methicillin-resistant S. aureus clinical | 2 ± 1 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 2 ± 0.5 | 4 ± 0.5 |
Methicillin-resistant S. aureus clinical | 2 ± 1 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 2 ± 0.5 | 4 ± 0.5 |
Methicillin-resistant S. aureus clinical | 2 ± 1 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 2 ± 0.5 | 2 ± 0.5 |
Methicillin-resistant S. aureus clinical | 2 ± 1 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 2 ± 0.5 | 2 ± 0.5 |
Staphylococcus epidermidis clinical | 2 ± 1 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 2 ± 0.5 | 4 ± 0.5 |
Staphylococcus epidermidis clinical | 2 ± 1 | 4 ± 0.5 | 1 ± 1 | 2 ± 1 | 2 ± 0.5 | 4 ± 0.5 |
Enterococcus faecalis clinical | 8 ± 0.5 | 16 ± 0.5 | 4 ± 1 | 8 ± 1 | 8 ± 0.5 | 8 ± 0.5 |
Gram-Negative Bacteria | ||||||
Escherichia coli ATCC 35218 | >16 ± 0.5 | >16 ± 0.5 | 16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 |
Escherichia coli clinical | >16 ± 0.5 | >16 ± 0.5 | 16 ± 0.5 | 16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 |
Pseudomonas aeruginosa ATCC 27853 | >16 ± 0.5 | >16 ± 0.5 | 16 ± 0.5 | 16 ± 0.5 | 16 ± 0.5 | >16 ± 0.5 |
Pseudomonas aeruginosa clinical | >16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 | >16 ± 0.5 | 16 ± 0.5 | >16 ± 0.5 |
Klebsiella pneumoniae clinical | >16 ± 0.5 | >16 ± 0.5 | 16 ± 0.5 | 16 ± 0.5 | 16 ± 0.5 | >16 ± 0.5 |
Yeast | ||||||
Candida albicans 556 RM | >16 ± 0.5 | >16 ± 0.5 | 8 ± 0.5 | 8 ± 0.5 | 16 ± 0.5 | >16 ± 0.5 |
Candida glabrata clinical | 16 ± 0.5 | 16 ± 0.5 | 8 ± 1 | 8 ± 1 | 16 ± 0.5 | 16 ± 0.5 |
Candida tropicalis 1011 RM | 2 ± 1 | 4 ± 1 | 2 ± 1 | 2 ± 1 | 16 ± 0.5 | 16 ± 0.5 |
Candida parapsilosis RM | 4 ± 0.5 | 4 ± 0.5 | 2 ± 0.5 | 2 ± 0.5 | 16 ± 0.5 | 16 ± 0.5 |
Time | Leaf Oil | Rhizome Oil | Whole-Plant Oil | ||||||
---|---|---|---|---|---|---|---|---|---|
IC50 | IC90 | MLC | IC50 | IC90 | MLC | IC50 | IC90 | MLC | |
1 h | 1 | 2 | 4 | 0.25 | 0.5 | 1 | 0.5 | 1 | 2 |
4 h | 0.12 | 0.25 | 0.5 | 0.12 | 0.25 | 0.5 | 0.12 | 0.25 | 0.5 |
24 h | 0.016 | 0.03 | 0.06 | 0.016 | 0.03 | 0.06 | 0.016 | 0.03 | 0.06 |
48 h | 0.008 | 0.016 | 0.03 | 0.004 | 0.008 | 0.016 | 0.008 | 0.016 | 0.03 |
Cell Lines and Virus | MRC-5 a | Vero 76 b | EVA71 |
---|---|---|---|
CC50 c | EC50 d | ||
Leaves oil | 100 | 80 | >80 |
Rhizomes oil | >100 | >100 | >100 |
Whole-plant oil | >100 | >100 | >100 |
Rupintrivir e | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadu, M.G.; Trong Le, N.; Viet Ho, D.; Quoc Doan, T.; Tuan Le, A.; Raal, A.; Usai, M.; Marchetti, M.; Sanna, G.; Madeddu, S.; et al. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics 2020, 9, 334. https://doi.org/10.3390/antibiotics9060334
Donadu MG, Trong Le N, Viet Ho D, Quoc Doan T, Tuan Le A, Raal A, Usai M, Marchetti M, Sanna G, Madeddu S, et al. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics. 2020; 9(6):334. https://doi.org/10.3390/antibiotics9060334
Chicago/Turabian StyleDonadu, Matthew Gavino, Nhan Trong Le, Duc Viet Ho, Tuan Quoc Doan, Anh Tuan Le, Ain Raal, Marianna Usai, Mauro Marchetti, Giuseppina Sanna, Silvia Madeddu, and et al. 2020. "Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk" Antibiotics 9, no. 6: 334. https://doi.org/10.3390/antibiotics9060334
APA StyleDonadu, M. G., Trong Le, N., Viet Ho, D., Quoc Doan, T., Tuan Le, A., Raal, A., Usai, M., Marchetti, M., Sanna, G., Madeddu, S., Rappelli, P., Diaz, N., Molicotti, P., Carta, A., Piras, S., Usai, D., Thi Nguyen, H., Cappuccinelli, P., & Zanetti, S. (2020). Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics, 9(6), 334. https://doi.org/10.3390/antibiotics9060334