The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections
Abstract
:1. Introduction
2. Antimicrobial Resistance
Mechanisms of Antimicrobial Resistance
3. Plant Derived Natural Products
Plant-Derived Drug Discovery: The Two Sides of the Coin
4. Terpenes
4.1. Monoterpenes
4.2. Sesquiterpenes
4.3. Diterpenes
4.4. Triterpenes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robert, G. The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg. Infect. Dis. J. 2017, 23, 849. [Google Scholar]
- Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic discovery: Where have we come from, where do we go? Antibiotics 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, K. Antibiotics: From prehistory to the present day. J Antimicrob. Chemother. 2016, 71, 572–575. [Google Scholar] [CrossRef]
- Zappia, G.; Ingallina, C.; Ghirga, F.; Botta, B. Oxazolidin-2-ones: Antibacterial activity and chemistry. In Antimicrobials: New and Old Molecules in the Fight against Multi-Resistant Bacteria; Marinelli, F., Genilloud, O., Eds.; Springer: Berlin, Germany, 2014; pp. 247–266. [Google Scholar]
- Rather, I.A.; Kim, B.C.; Bajpai, V.K.; Park, Y.H. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi. J. Biol. Sci. 2017, 24, 808–812. [Google Scholar] [CrossRef]
- Dodds, D.R. Antibiotic resistance: A current epilogue. Biochem. Pharmacol. 2017, 134, 139–146. [Google Scholar] [CrossRef]
- Katz, M.L.; Mueller, L.V.; Polyakov, M.; Weinstock, S.F. Where have all the antibiotic patents gone? Nat. Biotechnol. 2006, 24, 1529–1531. [Google Scholar] [CrossRef]
- Kraus, C.N. Low hanging fruit in infectious disease drug development. Curr. Opin. Microbiol. 2008, 11, 434–438. [Google Scholar] [CrossRef]
- Projan, S.J. Why is big pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 2003, 6, 427–430. [Google Scholar] [CrossRef]
- Projan, S.J.; Shlaes, D.M. Antibacterial drug discovery: Is it all downhill from here? Clin. Microbiol. Infect. 2004, 10, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Spellberg, B.; Powers, J.H.; Brass, E.P.; Miller, L.G.; Edwards, J.E., Jr. Trends in antimicrobial drug development: Implications for the future. Clin. Infect. Dis. 2004, 38, 1279–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the eu and the european economic area in 2015: A population-level modelling analysis. Lancet Infect. Dis 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Renwick, M.J.; Brogan, D.M.; Mossialos, E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J. Antibiot. (Tokyo) 2016, 69, 73–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Y.; Tatsumura, Y. Alexander fleming (1881-1955): Discoverer of penicillin. Singap. Med. J. 2015, 56, 366–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.K.; Knabel, S.J.; Kwan, B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 2013, 79, 7116–7121. [Google Scholar] [CrossRef] [Green Version]
- Keren, I.; Kaldalu, N.; Spoering, A.; Wang, Y.; Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 2004, 230, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.L. General principles of antibiotic resistance in bacteria. Drug Discov. Today Technol. 2014, 11, 33–39. [Google Scholar] [CrossRef]
- Arzanlou, M.; Chai, W.C.; Venter, H. Intrinsic, adaptive and acquired antimicrobial resistance in gram-negative bacteria. Essays Biochem. 2017, 61, 49–59. [Google Scholar]
- Cox, G.; Wright, G.D. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 2013, 303, 287–292. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Coculescu, B.I. Antimicrobial resistance induced by genetic changes. J. Med. Life. 2009, 2, 114–123. [Google Scholar] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, R.F.; Sa-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.; Richmond, G.E.; Piddock, L.J. Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Choi, U.; Lee, C.R. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol. 2019, 10, 953. [Google Scholar] [CrossRef]
- Cui, L.; Ma, X.; Sato, K.; Okuma, K.; Tenover, F.C.; Mamizuka, E.M.; Gemmell, C.G.; Kim, M.N.; Ploy, M.C.; El-Solh, N.; et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 5–14. [Google Scholar]
- Garcia, A.B.; Vinuela-Prieto, J.M.; Lopez-Gonzalez, L.; Candel, F.J. Correlation between resistance mechanisms in Staphylococcus aureus and cell wall and septum thickening. Infect. Drug Resist 2017, 10, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Bebear, C.; Pereyre, S.; Peuchant, O. Mycoplasma pneumoniae: Susceptibility and resistance to antibiotics. Future Microbiol. 2011, 6, 423–431. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. Beta-lactamases and beta-lactamase inhibitors in the 21st century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Casciaro, B.; Loffredo, M.R.; Luca, V.; Verrusio, W.; Cacciafesta, M.; Mangoni, M.L. Esculentin-1a derived antipseudomonal peptides: Limited induction of resistance and synergy with aztreonam. Protein Pept. Lett. 2018, 25, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Cha, H.J.; Kim, Y.G. Crystal structures of penicillin-binding protein d2 from Listeria monocytogenes and structural basis for antibiotic specificity. Antimicrob. Agents Chemother. 2018, 62, e00796-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, S.; Ganjloo, S.; Pourmand, M.R.; Mashhadi, R.; Ghazvini, K. Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; a systematic review. Microb. Pathog. 2020, 139, 103850. [Google Scholar] [CrossRef] [PubMed]
- Ghajavand, H.; Kargarpour Kamakoli, M.; Khanipour, S.; Pourazar Dizaji, S.; Masoumi, M.; Rahimi Jamnani, F.; Fateh, A.; Yaseri, M.; Siadat, S.D.; Vaziri, F. Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: Mutations versus efflux pumps. Antimicrob. Resist Infect. Control 2019, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Miryala, S.K.; Anbarasu, A.; Ramaiah, S. Systems biology studies in Pseudomonas aeruginosa PA01 to understand their role in biofilm formation and multidrug efflux pumps. Microb. Pathog. 2019, 136, 103668. [Google Scholar] [CrossRef]
- Casciaro, B.; Dutta, D.; Loffredo, M.R.; Marcheggiani, S.; McDermott, A.M.; Willcox, M.D.; Mangoni, M.L. Esculentin-1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Pept. Sci. 2018, 110, e23074. [Google Scholar] [CrossRef]
- Crouzet, M.; Claverol, S.; Lomenech, A.M.; Le Senechal, C.; Costaglioli, P.; Barthe, C.; Garbay, B.; Bonneu, M.; Vilain, S. Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 min of incubation. PLoS ONE 2017, 12, e0180341. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, W.F.; Silva, P.M.S.; Silva, R.C.S.; Silva, G.M.M.; Machado, G.; Coelho, L.; Correia, M.T.S. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect. 2018, 98, 111–117. [Google Scholar] [CrossRef]
- Casciaro, B.; Moros, M.; Rivera-Fernandez, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta. Biomater. 2017, 47, 170–181. [Google Scholar] [CrossRef] [Green Version]
- d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Coll. Surf. B Biointerfaces 2015, 135, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: In vitro and in vivo studies. Biomacromolecules 2019, 20, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Lopez, Y.; Soto, S.M. The usefulness of microalgae compounds for preventing biofilm infections. Antibiotics 2019, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casciaro, B.; Lin, Q.; Afonin, S.; Loffredo, M.R.; de Turris, V.; Middel, V.; Ulrich, A.S.; Di, Y.P.; Mangoni, M.L. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide esculentin-1a(1-21)NH2. FEBS J. 2019, 286, 3874–3891. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front Pharmacol. 2019, 10, 1480. [Google Scholar] [CrossRef]
- Sneader, W. The prehistoric period. In Drug Discovery; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2006; pp. 6–11. [Google Scholar]
- Sneader, W. Pre-hellenic civilisations. In Drug discovery; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2006; pp. 12–17. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [Green Version]
- Eigenschink, M.; Dearing, L.; Dablander, T.E.; Maier, J.; Sitte, H.H. A critical examination of the main premises of traditional chinese medicine. Wien. Klin. Wochenschr. 2020, 132, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Sneader, W. Drug Discovery; John Wiley and Sons: Chichester, UK; Hoboken, NJ, USA, 2006; pp. 18–23. [Google Scholar]
- Sneader, W. Herbals. In Drug Discovery; John Wiley and Sons: Chichester, UK; Hoboken, NJ, USA, 2006; pp. 32–40. [Google Scholar]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 2019, 91, e20190105. [Google Scholar] [CrossRef]
- Palermo, R.; Ghirga, F.; Piccioni, M.G.; Bernardi, F.; Zhdanovskaya, N.; Infante, P.; Mori, M. Natural products inspired modulators of cancer stem cells-specific signaling pathways notch and hedgehog. Curr. Pharm. Des. 2018, 24, 4251–4269. [Google Scholar] [CrossRef]
- Romano, J.D.; Tatonetti, N.P. Informatics and computational methods in natural product drug discovery: A review and perspectives. Front. Genet 2019, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- David, B.; Wolfender, J.-L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Bucar, F.; Wube, A.; Schmid, M. Natural product isolation--how to get from biological material to pure compounds. Nat. Prod. Rep. 2013, 30, 525–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinghorn, A.D.; Pan, L.; Fletcher, J.N.; Chai, H. The relevance of higher plants in lead compound discovery programs. J. Nat. Prod. 2011, 74, 1539–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrich, C.J.; Beutler, J.A. Matching the power of high throughput screening to the chemical diversity of natural products. Nat. Prod. Rep. 2013, 30, 1284–1298. [Google Scholar] [CrossRef] [Green Version]
- Coan, K.E.; Ottl, J.; Klumpp, M. Non-stoichiometric inhibition in biochemical high-throughput screening. Expert Opin. Drug Discov. 2011, 6, 405–417. [Google Scholar] [CrossRef]
- Johnson, T.A.; Sohn, J.; Inman, W.D.; Estee, S.A.; Loveridge, S.T.; Vervoort, H.C.; Tenney, K.; Liu, J.; Ang, K.K.; Ratnam, J.; et al. Natural product libraries to accelerate the high-throughput discovery of therapeutic leads. J. Nat. Prod. 2011, 74, 2545–2555. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Ven, W.; Verbiest, T.; Koeckelberghs, G.; Chen, C.; Cui, Y.; Vermorken, A. Polyphenols can inhibit furin in vitro as a result of the reactivity of their auto-oxidation products to proteins. Curr. Med. Chem. 2012, 20, 840–850. [Google Scholar]
- Balunas, M.J.; Su, B.; Landini, S.; Brueggemeier, R.W.; Kinghorn, A.D. Interference by naturally occurring fatty acids in a noncellular enzyme-based aromatase bioassay. J. Nat. Prod. 2006, 69, 700–703. [Google Scholar] [CrossRef]
- Corson, T.W.; Crews, C.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell 2007, 130, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, M. Ethnopharmacology in the 21st century—Grand challenges. Front Pharmacol. 2010, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, M.; Gibbons, S. Ethnopharmacology in drug discovery: An analysis of its role and potential contribution. J. Pharm. Pharmacol. 2001, 53, 425–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, G.D. Unlocking the potential of natural products in drug discovery. Microb. Biotechnol. 2019, 12, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Linington, R.G.; Kubanek, J.; Luesch, H. New methods for isolation and structure determination of natural products. Nat. Prod. Rep. 2019, 36, 942–943. [Google Scholar] [CrossRef]
- Wilson, B.A.P.; Thornburg, C.C.; Henrich, C.J.; Grkovic, T.; O’Keefe, B.R. Creating and screening natural product libraries. Nat. Prod. Rep. 2020. [Google Scholar] [CrossRef] [PubMed]
- Infante, P.; Mori, M.; Alfonsi, R.; Ghirga, F.; Aiello, F.; Toscano, S.; Ingallina, C.; Siler, M.; Cucchi, D.; Po, A.; et al. Gli1/DNA interaction is a druggable target for hedgehog-dependent tumors. EMBO J. 2015, 34, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Ingallina, C.; Costa, P.M.; Ghirga, F.; Klippstein, R.; Wang, J.T.; Berardozzi, S.; Hodgins, N.; Infante, P.; Pollard, S.M.; Botta, B.; et al. Polymeric glabrescione b nanocapsules for passive targeting of hedgehog-dependent tumor therapy. In Vitro Nanomed. (Lond.) 2017, 12, 711–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, M.; Tottone, L.; Quaglio, D.; Zhdanovskaya, N.; Ingallina, C.; Fusto, M.; Ghirga, F.; Peruzzi, G.; Crestoni, M.E.; Simeoni, F.; et al. Identification of a novel chalcone derivative that inhibits notch signaling in t-cell acute lymphoblastic leukemia. Sci. Rep. 2017, 7, 2213. [Google Scholar] [CrossRef]
- Casciaro, B.; Calcaterra, A.; Cappiello, F.; Mori, M.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Nigritanine as a new potential antimicrobial alkaloid for the treatment of Staphylococcus aureus-induced infections. Toxins 2019, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Cevatemre, B.; Botta, B.; Mori, M.; Berardozzi, S.; Ingallina, C.; Ulukaya, E. The plant-derived triterpenoid tingenin b is a potent anticancer agent due to its cytotoxic activity on cancer stem cells of breast cancer in vitro. Chem. Biol. Interact. 2016, 260, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Circi, S.; Capitani, D.; Randazzo, A.; Ingallina, C.; Mannina, L.; Sobolev, A.P. Panel test and chemical analyses of commercial olive oils: A comparative study. Chem. Biol. Technol. Agric. 2017, 4, 18. [Google Scholar] [CrossRef]
- Berardozzi, S.; Bernardi, F.; Infante, P.; Ingallina, C.; Toscano, S.; De Paolis, E.; Alfonsi, R.; Caimano, M.; Botta, B.; Mori, M.; et al. Synergistic inhibition of the hedgehog pathway by newly designed smo and gli antagonists bearing the isoflavone scaffold. Eur. J. Med. Chem. 2018, 156, 554–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglio, D.; Zhdanovskaya, N.; Tobajas, G.; Cuartas, V.; Balducci, S.; Christodoulou, M.S.; Fabrizi, G.; Gargantilla, M.; Priego, E.M.; Carmona Pestana, A.; et al. Chalcones and chalcone-mimetic derivatives as notch inhibitors in a model of t-cell acute lymphoblastic leukemia. ACS Med. Chem. Lett. 2019, 10, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Lospinoso Severini, L.; Quaglio, D.; Basili, I.; Ghirga, F.; Bufalieri, F.; Caimano, M.; Balducci, S.; Moretti, M.; Romeo, I.; Loricchio, E.; et al. A smo/gli multitarget hedgehog pathway inhibitor impairs tumor growth. Cancers 2019, 11, 1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420–451. [Google Scholar] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Osbourn, A.E.; Lanzotti, V. Plant-Derived Natural Products; Springer: Dordrecht, The Netherlands, 2009; pp. 361–384. [Google Scholar]
- Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 2017, 7, 172. [Google Scholar] [CrossRef]
- Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological properties of geraniol—A review. Planta Med. 2019, 85, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.; Newman, D.; Kingston, D. Terrestrial plants as a source of novel pharmaceutical agents. Compr. Nat. Prod. II Chem. Biol. 2010, 2, 5–39. [Google Scholar]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014, 31, 1612–1661. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, L.; Skapska, S.; Marszalek, K. Ursolic acid---A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015, 20, 20614–20641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M. Terpenoids. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–266. [Google Scholar]
- Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of terpenoids: Monoterpenes, sesquiterpenes and diterpenes. Annu. Plant Rev. 2018, 40, 258–303. [Google Scholar]
- Guimaraes, A.C.; Meireles, L.M.; Lemos, M.F.; Guimaraes, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Chen, L.L.; Wang, S.F.; Wang, Y.; Li, Y.; Gao, K. Anti-inflammatory terpenoids from the leaves and twigs of Dysoxylum gotadhora. J. Nat. Prod. 2015, 78, 1037–1044. [Google Scholar] [CrossRef]
- Nothias-Scaglia, L.F.; Pannecouque, C.; Renucci, F.; Delang, L.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. Antiviral activity of diterpene esters on chikungunya virus and hiv replication. J. Nat. Prod. 2015, 78, 1277–1283. [Google Scholar] [CrossRef]
- Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.; Groundwater, P.; Li, G. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2012, 20, 908–931. [Google Scholar]
- Yuan, X.L.; Mao, X.X.; Du, Y.M.; Yan, P.Z.; Hou, X.D.; Zhang, Z.F. Anti-tumor activity of cembranoid-type diterpenes isolated from Nicotiana tabacum L. Biomoleculars 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Quaglio, D.; Corradi, S.; Erazo, S.; Vergine, V.; Berardozzi, S.; Sciubba, F.; Cappiello, F.; Crestoni, M.E.; Ascenzioni, F.; Imperi, F.; et al. Structural elucidation and antimicrobial characterization of novel diterpenoids from Fabiana densa var. Ramulosa. ACS Med. Chem. Lett. 2020, 11, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Imane, N.I.; Fouzia, H.; Azzahra, L.F.; Ahmed, E.; Ismail, G.; Idrissa, D.; Mohamed, K.-H.; Sirine, F.; L’Houcine, O.; Noureddine, B. Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur. J. Integr. Med. 2020, 35, 101074. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Lim, S.H.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 2014, 65, 225–257. [Google Scholar] [CrossRef]
- Demetzos, C.; Dimas, K. Labdane-type diterpenes: Chemistry and biological activity. Stud. Nat. Prod. Chem. 2001, 25, 235–292. [Google Scholar]
- Taylor, R.S.L.; Towers, G.H.N. Antibacterial constituents of the nepalese medicinal herb, Centipeda Minima. Phytochemistry 1998, 47, 631–634. [Google Scholar] [CrossRef]
- Kawazoe, K.; Tsubouchi, Y.; Abdullah, N.; Takaishi, Y.; Shibata, H.; Higuti, T.; Hori, H.; Ogawa, M. Sesquiterpenoids from Artemisia gilvescens and an anti-mrsa compound. J. Nat. Prod. 2003, 66, 538–539. [Google Scholar] [CrossRef]
- Ordonez, P.E.; Quave, C.L.; Reynolds, W.F.; Varughese, K.I.; Berry, B.; Breen, P.J.; Malagon, O.; Vidari, G.; Smeltzer, M.S.; Compadre, C.M. Sesquiterpene lactones from Gynoxys verrucosa and their anti-mrsa activity. J. Ethnopharmacol. 2011, 137, 1055–1059. [Google Scholar] [CrossRef] [Green Version]
- Mustaffa, F.; Indurkar, J.; Ismail, S.; Shah, M.; Mansor, S.M. An antimicrobial compound isolated from Cinnamomum iners leaves with activity against methicillin-resistant Staphylococcus aureus. Molecules 2011, 16, 3037–3047. [Google Scholar] [CrossRef]
- Corlay, N.; Lecso-Bornet, M.; Leborgne, E.; Blanchard, F.; Cachet, X.; Bignon, J.; Roussi, F.; Butel, M.J.; Awang, K.; Litaudon, M. Antibacterial labdane diterpenoids from Vitex vestita. J. Nat. Prod. 2015, 78, 1348–1356. [Google Scholar] [CrossRef]
- Farimani, M.M.; Taleghani, A.; Aliabadi, A.; Aliahmadi, A.; Esmaeili, M.A.; Namazi Sarvestani, N.; Khavasi, H.R.; Smiesko, M.; Hamburger, M.; Nejad Ebrahimi, S. Labdane diterpenoids from Salvia leriifolia: Absolute configuration, antimicrobial and cytotoxic activities. Planta Med. 2016, 82, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Liu, Y.; Duan, X.; Chen, C.; Liu, J.; Zhu, H.; Xue, Y.; Zhang, Y. A pair of epimeric cassane-type diterpenoids and a new labdane-type derivative from Caesalpinia decapetala. Tetrahedron 2018, 74, 3852–3857. [Google Scholar] [CrossRef]
- Siddique, H.; Pendry, B.; Rahman, M.M. Terpenes from Zingiber montanum and their screening against multi-drug resistant and methicillin resistant Staphylococcus aureus. Molecules 2019, 24, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar-Marques, C.; Rijo, P.; Simoes, M.F.; Duarte, M.A.; Rodriguez, B. Abietanes from Plectranthus grandidentatus and P. hereroensis against methicillin- and vancomycin-resistant bacteria. Phytomedicine 2006, 13, 267–271. [Google Scholar] [CrossRef]
- Jurkaninova, S.; Kubinova, R.; Nejezchlebova, M.; Gazdova, M.; Hanakova, Z.; Dall’Acqua, S. Anti-mrsa activity of abietane diterpenes from Coleus blumei benth. Nat. Prod. Res. 2019, 1–7. [Google Scholar] [CrossRef]
- Porto, T.S.; Simao, M.R.; Carlos, L.Z.; Martins, C.H.; Furtado, N.A.; Said, S.; Arakawa, N.S.; dos Santos, R.A.; Veneziani, R.C.; Ambrosio, S.R. Pimarane-type diterpenes obtained by biotransformation: Antimicrobial properties against clinically isolated gram-positive multidrug-resistant bacteria. Phytother. Res. 2013, 27, 1502–1507. [Google Scholar] [CrossRef]
- Stavri, M.; Paton, A.; Skelton, B.W.; Gibbons, S. Antibacterial diterpenes from Plectranthus ernstii. J. Nat. Prod. 2009, 72, 1191–1194. [Google Scholar] [CrossRef]
- Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and emrsa strains of Staphylococcus aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef]
- Soares, A.C.F.; Matos, P.M.; Silva, K.F.d.; Martins, C.H.G.; Veneziani, R.C.S.; Ambrósio, S.R.; Dias, H.J.; Santos, R.A.d.; Heleno, V.C.G. Antimicrobial potential of natural and semi-synthetic ent-kaurane and ent-pimarane diterpenes against clinically isolated gram-positive multidrug-resistant bacteria. J. Braz. Chem. Soc. 2019, 30, 333–341. [Google Scholar] [CrossRef]
- Pfeifer Barbosa, A.L.; Wenzel-Storjohann, A.; Barbosa, J.D.; Zidorn, C.; Peifer, C.; Tasdemir, D.; Cicek, S.S. Antimicrobial and cytotoxic effects of the Copaifera reticulata oleoresin and its main diterpene acids. J. Ethnopharmacol. 2019, 233, 94–100. [Google Scholar] [CrossRef]
- Ghirga, F.S.R.; Cavinato, L.; Lo Sciuto, A.; Corradi, S.; Quaglio, D.; Calcaterra, A.; Casciaro, B.; Loffredo, M.R.; Cappiello, F.; Morelli, P.; et al. A novel colistin adjuvant identified by virtual screening for arnt inhibitors. J. Antimicrob. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pooi Yin, C.; Navaratnam, P.; Chung, L.Y. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Annals Clin. Microbial. Antimicrob. 2011, 10, 25. [Google Scholar]
- Horiuchi, K.; Shiota, S.; Hatano, T.; Yoshida, T.; Kuroda, T.; Tsuchiya, T. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (vre). Biol. Pharm. Bull. 2007, 30, 1147–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia. coli. Chem. Biol. Drug Des. 2015, 86, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Chen, H.T.; Wu, Z.Y.; Jhan, Y.L.; Shyu, C.L.; Chou, C.H. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules 2016, 21, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, B.G.; Rodrigues Teixeira, A.M.; Silva, P.T.D.; Vasconcelos Evaristo, F.F.; de Vaconcelos, M.A.; Holanda Teixeira, E.; Dos Santos, H.S.; Bandeira, P.N.; Sena-Junior, D.M.; Barreto, V.P.; et al. Antimicrobial activity of the lupane triterpene 3beta,6beta,16beta-trihydroxylup-20(29)-ene isolated from Combretum leprosum mart. J. Med. Microbiol. 2019, 68, 1438–1444. [Google Scholar] [CrossRef]
- Gutierrez-Lugo, M.T.; Singh, M.P.; Maiese, W.M.; Timmermann, B.N. New antimicrobial cycloartane triterpenes from Acalypha communis. J. Nat. Prod. 2002, 65, 872–875. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tang, G.H.; Yuan, C.M.; Zhang, Y.; Zou, T.; Yu, C.; Zhao, Q.; Hao, X.J.; He, H.P. Aphagrandinoids a-d, cycloartane triterpenoids with antibacterial activities from Aphanamix. grandifolia. Fitoterapia 2013, 85, 64–68. [Google Scholar] [CrossRef]
- Mosa, R.; Mandlakayise, L.; Thandeka, V.; Andy, R. Antibacterial activity of two triterpenes from stem bark of Protorhus longifolia. J. Med. Plant. Res. 2014, 8, 686–702. [Google Scholar]
- Kim, C.; Hesek, D.; Lee, M.; Mobashery, S. Potentiation of the activity of beta-lactam antibiotics by farnesol and its derivatives. Bioorg. Med. Chem. Lett. 2018, 28, 642–645. [Google Scholar] [CrossRef]
- Gupta, V.K.; Verma, S.; Pal, A.; Srivastava, S.K.; Srivastava, P.K.; Darokar, M.P. In vivo efficacy and synergistic interaction of 16alpha-hydroxycleroda-3, 13 (14) z-dien-15, 16-olide, a clerodane diterpene from Polyalthia longifolia against methicillin-resistant Staphylococcus saureus. Appl. Microbiol. Biotechnol. 2013, 97, 9121–9131. [Google Scholar] [CrossRef] [PubMed]
- Sayout, A.; Ouarhach, A.; Rabie, R.; Dilagui, I.; Soraa, N.; Romane, A. Evaluation of antibacterial activity of lavandula pedunculata subsp. atlantica (braun-blanq.) romo essential oil and selected terpenoids against resistant bacteria strains-structure-activity relationships. Chem. Biodivers. 2020, 17, e1900496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pages, J.M.; Amaral, L.; Bolla, J.M. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob. Agents Chemother. 2009, 53, 2209–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Breij, A.; Karnaoukh, T.G.; Schrumpf, J.; Hiemstra, P.S.; Nibbering, P.H.; van Dissel, J.T.; de Visser, P.C. The licorice pentacyclic triterpenoid component 18beta-glycyrrhetinic acid enhances the activity of antibiotics against strains of methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, W.F.; Enriquez, R.G. Terpenes: Mono-, sesqui-, and higher Terpenes. In Modern NMR Approaches to the Structure Elucidation of Natural Products: Volume 2: Data Acquisition and Applications to Compound Classes; The Royal Society of Chemistry: Cambridge, UK, 2017. [Google Scholar]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Mahizan, N.; Yang, S.K.; Moo, C.-L.; Song, A.; Chong, C.M.; Chong, C.; Abushelaibi, A.; Lim, E.; Lai, K.-S. Terpene derivatives as a potential agent against antimicrobial resistance (amr) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Sayout, A.; Ouarhach, A.; Dilagui, I.; Soraa, N.; Romane, A. Antibacterial activity and chemical composition of essential oil from Lavandula tenuisecta coss.Ex ball. An endemic species from Morocco. Eur. J. Integrative Med. 2020, 33, 101017. [Google Scholar] [CrossRef]
- Brilhante, R.S.; Valente, L.G.; Rocha, M.F.; Bandeira, T.J.; Cordeiro, R.A.; Lima, R.A.; Leite, J.J.; Ribeiro, J.F.; Pereira, J.F.; Castelo-Branco, D.S.; et al. Sesquiterpene farnesol contributes to increased susceptibility to beta-lactams in strains of Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2012, 56, 2198–2200. [Google Scholar] [CrossRef] [Green Version]
- Kuo-Hsiung, L.; Ibuka, T.; Rong-Yang, W.; Geissman, T.A. Structure-antimicrobial activity relationships among the sesquiterpene lactones and related compounds. Phytochemistry 1977, 16, 1177–1181. [Google Scholar] [CrossRef]
- Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 2004, 21, 263–277. [Google Scholar] [CrossRef]
- Gonçalves, O.; Pereira, R.; Gonçalves, F.; Mendo, S.; Coimbra, M.A.; Rocha, S.M. Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 723, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, R.; Ambrosio, S.; Martins, C.H.; Lemes, D.C.; Oliveira, L.C. Antibacterial potential of diterpenoids. Stud. Nat. Prod. Chem. 2017, 54, 109–139. [Google Scholar]
- Gupta, V.K.; Tiwari, N.; Gupta, P.; Verma, S.; Pal, A.; Srivastava, S.K.; Darokar, M.P. A clerodane diterpene from Polyalthia longifolia as a modifying agent of the resistance of methicillin resistant Staphylococcus aureus. Phytomedicine 2016, 23, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Neto, Í.; Faustino, C.; Rijo, P. Antimicrobial abietane diterpenoids against resistant bacteria and biofilms. In The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2015; Volume 1, pp. 15–26. [Google Scholar]
- Urzua, A.; Rezende, M.C.; Mascayano, C.; Vasquez, L. A structure-activity study of antibacterial diterpenoids. Molecules 2008, 13, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Zloh, M.; Kaatz, G.W.; Gibbons, S. Inhibitors of multidrug resistance (mdr) have affinity for mdr substrates. Bioorg. Med. Chem. Lett. 2004, 14, 881–885. [Google Scholar] [CrossRef]
- Imperi, F.; Ascenzioni, F.; Mori, M.; Ghirga, F.; Quaglio, D.; Corradi, S.; Lo Sciuto, A.; Botta, B.; Calcaterra, A.; Stefanelli, R. Inibitori della antibiotico-resistenza mediata da ArnT. IT102019000012888, 2019. Available online: https://www.uniroma1.it/it/brevetto/102019000012888 (accessed on 15 May 2020).
- Chung, P.Y. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine 2019, 73, 152933. [Google Scholar] [CrossRef]
- Catteau, L.; Zhu, L.; Van Bambeke, F.; Quetin-Leclercq, J. Natural and hemi-synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: A review. Phytochem. Rev. 2018, 17, 1129–1163. [Google Scholar] [CrossRef]
- Paul, S.; Talla, E.; Matchawe, C.; Alembert, T.T.; Elisabeth, Z.M.; Sophie, L.; Luce, V.E.; Maurice, T.F.; Joël, Y.; Alex, A.; et al. Pentacyclic triterpenes and crude extracts with antimicrobial activity from Cameroonian brown propolis samples. J. Appl. Pharm. Sci. 2014, 4, 1–9. [Google Scholar]
Compound | Plant Source | Number of CT | Medicinal Purposes | Ref. |
---|---|---|---|---|
Andrographolide | Andrographis paniculata | 7 | Squamous Cell Carcinoma of Esophagus, Multiple Sclerosis, Cognitive Impairment, Migraine Disorders, Arthritis Rheumatoid, Acute Respiratory Infections. | [79] |
Artemisinin | Artemisia annua L. | 161 | Schizophrenia, Malaria, Plasmodium Falciparum Malaria, Malaria in Pregnancy, Uncomplicated Falciparum Malaria, Vivax Malaria, Human Papilloma Virus Infection, Pre-Cancerous Dysplasia, Cervical Dysplasia, Metastatic Breast Cancer, Cytomegalovirus Infections, Increased Drug Resistance, Colorectal Cancer, Bowel Cancer, HIV, G6PD Deficiency, Schistosoma Haematobium and Schistosoma Mansoni. | [64,80,81] |
Betulin | Betula spp. | 4 | Epidermolysis Bullosa, Wounds, Burns. | [82] |
Betulinic acid | Betula pubescens, Hypericum lanceolatum | 2 | Dysplastic Nevus Syndrome, Anxiety, Psychological Stress. | [82,83] |
Boswellic acid | Boswellia serrata | 4 | Relapsing Remitting Multiple Sclerosis, Renal Stones, Knee Osteoarthritis, Joint Pain, Stiffness. | [79] |
Geraniol | Cinnamomum tenuipilum, Valeriana officinalis | 2 | Coronary Artery Disease, Uterine Cervical Dysplasia, Papillomavirus Infections. | [84] |
Ginkgolides | Ginkgo biloba | 7 | Intravenous Alteplase Thrombolysis, Neurological Improving, Allergy, Ischemic Stroke. | [85] |
Gossypol | Gossypium hirsutum L. | 21 | Recurrent Adrenocortical Carcinoma, Stage III and IV Adrenocortical Carcinoma, Extensive Stage Small Cell Lung Cancer, Unspecified Adult Solid Tumor, Adult Glioblastoma, Adult Gliosarcoma, Recurrent Adult Brain Tumor, Chronic Lymphocytic Leukemia, Recurrent Chronic Lymphocytic Leukemia, Follicular Lymphoma, Adenocarcinoma of the Prostate, Prostate Cancer, Diffuse Large Cell Lymphoma, Mantle Cell Lymphoma, Laryngeal Cancer, Brain and Central Nervous System Tumors. | [80] |
Limonene | Citrus spp., Apium graveolens | 10 | Breast Cancer, Allergic Contact Dermatitis Due to Cosmetics, Obesity. | [86] |
Lupeol | Hymenocardia acida | 2 | Acne. | [83] |
Triptolide | Tripterygium wilfordii | 4 | HIV-infection/AIDS, Advanced Cancer, Gastric Cancer, Breast Cancer, Pancreatic Cancer, Prostate Cancer, Metastatic Colorectal Cancer, Solid Tumor, Solid Carcinoma, Solid Carcinoma of Stomach, Cancer of Stomach. | [64,85,87] |
Ursolic acid | Rosmarinus officinalis, Malus domestica, Salvia officinalis, Thymus vulgaris | 2 | Metabolic Syndrome X, Sarcopenia. | [88] |
Compound | Trade Name | Plant Source | Medicinal Purposes | Ref. |
---|---|---|---|---|
Arglabin | Arglabin | Artemisia glabella | Cancer chemotherapy. | [80,81] |
Artemisinin | Artemisinin | Artemisia annua L. | Antiprotozoal agent: Antimalarial. | [80,81] |
Docetaxel | Taxotere | Taxus baccata | Treatment of head, neck, stomach, lung, prostate, breast and ovarian cancers. | [79,81] |
Ingenol mebutate | Picato | Euphorbia peplus L. | Actinic keratosis. | [80,87] |
Paclitaxel | Taxol®, Paxene®, Abraxane, Nanoxel | Taxus brevifolia Nutt. | Chemotherapeutic agent for many types of cancer. | [80,89] |
N. | Common Name | Chemical Structure | Tested Microorganism | Antimicrobial Effect | Source | Ref. |
---|---|---|---|---|---|---|
Monoterpenes | ||||||
1 | Geraniol | E. aerogenes | Efflux Pump Inhibitor | Species: Helichrysum italicum | [130] | |
2 | Camphor | S. aureus E. coli E. aerogenes P. aeruginosa K. pneumoniae K. oxytoca Salmonella spp. A. baumannii E. cloacae | Growth inhibition | Species: Lavandula pedunculata subsp.atlantica (BRAUN-BLANQ) | [129] | |
3 | Linalool | S. aureus E. coli P. aeruginosa K. pneumoniae K. oxytoca Salmonella spp. A. baumannii E. cloacae | Growth inhibition | Species: Lavandula pedunculata subsp.atlantica (BRAUN-BLANQ) | [129] | |
4 | Terpinen-4-ol | S. aureus E. coli P. aeruginosa K. pneumoniae K. oxytoca Salmonella spp. A. baumannii E. cloacae | Growth inhibition | Species: Lavandula pedunculata subsp.atlantica (BRAUN-BLANQ) | [129] | |
5 | Borneol | S. aureus E. coli E. aerogenes P. aeruginosa K. pneumoniae K. oxytoca A. baumannii E. cloacae | Growth inhibition | Species: Lavandula pedunculata subsp.atlantica (BRAUN-BLANQ) | [129] | |
6 | Fenchone | S. aureus E. coli E. aerogenes P. aeruginosa K. pneumoniae K. oxytoca Salmonella spp. A. baumannii E. cloacae | Growth inhibition | Species: Lavandula pedunculata subsp.atlantica (BRAUN-BLANQ) | [129] | |
Sesquiterpenes | ||||||
7 | Farnesyl amine 2 | S.aureus | Growth inhibition | [127] | ||
8 | Farnesyl phosphoramidothioic acid 6 | S. aureus | Growth inhibition | [127] | ||
9 | Arnicolide D | MRSA MSSA | Growth inhibition | Species: Centipeda minima | [103] | |
10 | Arnicolide C | MRSA MSSA | Growth inhibition | Species: Centipeda minima | [103] | |
11 | Guaianolide 5 | MRSA | Growth inhibition | Species: Artemisia gilvescens | [104] | |
12 | Dehydroleucodine | MRSA | Growth inhibition | Species: Gynoxys verrucosa | [105] | |
13 | Xanthorrhizol | MRSA E. coli | Growth inhibition | Species: Cinnamomum iners | [106] | |
Diterpenes | ||||||
14 | Vitexolide A | S. aureus | Growth inhibition | Species: Vitex vestita | [107] | |
15 | Acuminolide | S. aureus | Growth inhibition | Species: Vitex vestita | [107] | |
16 | 12-epivitexolide A | S. aureus | Growth inhibition | Species: Vitex vestita | [107] | |
17 | 8(17),12E,14-labdatrien-6,19-olide | MRSA | Growth inhibition | Species: Salvia leriifolia | [108] | |
18 | 8(17),11(Z),13(E)- trien-15,19-dioic acid | MRSA | Growth inhibition | Species: Caesalpinia decapetala | [109] | |
19 | (E)-8(17),12-labdadiene-15,16-dial | S. aureus MRSA | Growth inhibition | Species: Zingiber montanum | [110] | |
20 | 16α-hydroxycleroda-3, 13 (14)-Z-dien-15, 16-olide (CD) | MRSA | Growth inhibition | Species: Polyathia longifolia | [128] | |
21 | Coleon U | MRSA VRE | Growth inhibition | Species: Plectranthus grandidentatus Plectranthus hereroensis | [111] | |
22 | 7α-acetoxy-6β-hydroxyroyleanone | MRSA VRE | Growth inhibition | Species: Plectranthus grandidentatus Plectranthus hereroensis | [111] | |
23 | Horminone | MRSA VRE | Growth inhibition | Species: Plectranthus grandidentatus Plectranthus hereroensis | [111] | |
24 | 7α,12-dihydroxy-17(15-16)abeo-abieta-8,12,16-triene-11,14-dione | MRSA VRE | Growth inhibition | Species: Plectranthus grandidentatus Plectranthus hereroensis | [111] | |
25 | 16-Acetoxy-7α,12-dihydroxy-8,12-abietadiene-11,14-dione | MRSA VRE | Growth inhibition | Species: Plectranthus grandidentatus Plectranthus hereroensis | [111] | |
26 | Sincoetsin C | MRSA | Growth inhibition | Species: Coleus blumei Benth. | [112] | |
27 | ent-8 (14),15-pimaradien-3β-ol | S. aureus S. capitis S. haemolyticus E. faecalis E. epidermidis S. pneumoniae | Cell membrane disruption | Species: Viguiera arenaria | [113] | |
28 | rel-15(Ϛ),16-epoxy-7R-hydroxypimar-8,14ene | MRSA | Growth inhibition | Species: Plectranthus ernstii | [114] | |
29 | rel-15(Ϛ),16-epoxy-7-oxopimar-8,14-ene | MRSA | Growth inhibition | Species: Plectranthus ernstii | [114] | |
30 | 1R,11S-dihydroxy-8R,13R-epoxylabd-14-ene | MRSA | Growth inhibition | Species: Plectranthus ernstii | [114] | |
31 | Isopimaric acid | MRSA | Growth inhibition | Species: Pinus nigra | [115] | |
32 | ent-kaurenoic acid | S. aureus S. capitis S. epidermidis S. haemolyticus E. faecalis MRSA | Cell membrane disruption | Species: Mikania glomerate Citrus reticulate | [116,117] | |
33 | ent-pimaradienoic acid | S. aureus S. capitis S. epidermidis S. haemolyticus E. faecalis | Cell membrane disruption | Species: Viguiera arenaria | [116] | |
34 | semisynthetic derivative of 33 | S. aureus S. capitis S. epidermidis | Cell membrane disruption | [116] | ||
35 | ent-beyer-15-en-18-O-oxalate (BBN149) | P. aeruginosa K. pneumoniae | Growth inhibition | Species: Fabiana densa var ramulosa | [118] | |
Triterpenes | ||||||
36 | α- Amyrin | MSSA MRSA | Growth inhibition | [119] | ||
37 | Betulinic acid | MSSA MRSA | Growth inhibition | [119] | ||
38 | Betulinaldehyde | MSSA MRSA | Growth inhibition | [119] | ||
39 | Oleanolic acid | MRSA VRE | Growth inhibition | Species: Salvia officinalis (Sage) | [120] | |
40 | Ursolic acid | MRSA VRE NASEC NAREC | Growth inhibition | Species: Salvia officinalis (Sage) Eucalyptus tereticornis Alstonia scholaris | [120,121,122] | |
41 | Butyl ester of ursolic acid | NASEC NAREC | Growth inhibition | [121] | ||
42 | Isopropyl ester of ursolic acid | NASEC NAREC | Growth inhibition | [121] | ||
43 | 18β-glycyrrhetinic acid (18β-GA) | MRSA | Growth inhibition | Species: Glycyrrhiza glabra | [131] | |
44 | 3β,6β,16β-trihydroxylup-20(29)-ene (CLF1) | S. aureus E. coli | Growth inhibition | Species: Combretum leprosum | [123] | |
45 | 16R-hydroxymollic | VRE MRSA | Growth inhibition | Species: Acalypha communis | [124] | |
46 | 15R-hydroxymollic | VRE | Growth inhibition | Species: Acalypha communis | [124] | |
47 | 7β,16β-dihydroxy-1,23-dideoxyjessic acids | VRE | Growth inhibition | Species: Acalypha communis | [124] | |
48 | Aphagrandinoid D | MRSA | Growth inhibition | Species: Acacia grandifolia | [125] | |
49 | 3β-hydroxylanosta-9,24-dien-21-oic acid | S. aureus P. mirabilis Salmonella | Growth inhibition | Species: Protorhus longifolia | [126] | |
50 | methyl-3β-hydroxylanosta-9,24-dien-21-oate | S. aureus P. mirabilis Salmonella | Growth inhibition | Species: Protorhus longifolia | [126] | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappiello, F.; Loffredo, M.R.; Del Plato, C.; Cammarone, S.; Casciaro, B.; Quaglio, D.; Mangoni, M.L.; Botta, B.; Ghirga, F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics 2020, 9, 325. https://doi.org/10.3390/antibiotics9060325
Cappiello F, Loffredo MR, Del Plato C, Cammarone S, Casciaro B, Quaglio D, Mangoni ML, Botta B, Ghirga F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics. 2020; 9(6):325. https://doi.org/10.3390/antibiotics9060325
Chicago/Turabian StyleCappiello, Floriana, Maria Rosa Loffredo, Cristina Del Plato, Silvia Cammarone, Bruno Casciaro, Deborah Quaglio, Maria Luisa Mangoni, Bruno Botta, and Francesca Ghirga. 2020. "The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections" Antibiotics 9, no. 6: 325. https://doi.org/10.3390/antibiotics9060325
APA StyleCappiello, F., Loffredo, M. R., Del Plato, C., Cammarone, S., Casciaro, B., Quaglio, D., Mangoni, M. L., Botta, B., & Ghirga, F. (2020). The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics, 9(6), 325. https://doi.org/10.3390/antibiotics9060325