Carbapenem-Sparing Strategies for ESBL Producers: When and How
Abstract
:1. Introduction
2. Piperacillin–Tazobactam
3. Ceftolozane–Tazobactam
4. Ceftazidime–Avibactam
5. Cephamycins
6. Cefepime
7. Temocillin
8. Quinolones
9. Aminoglycosides
10. Tigecycline–Eravacycline–Omadacycline
11. Fosfomycin
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 2017, S44–S51. [Google Scholar] [CrossRef]
- European Center for Disease Prevention and Control (ECDC). Surveillance of Antimicrobial Resistance in Europe 2018; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2019; Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 29 December 2019).
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs 2019, 2019, 1529–1541. [Google Scholar] [CrossRef]
- Maslikowska, J.A.; Walker, S.A.; Elligsen, M.; Mittmann, N.; Palmay, L.; Daneman, N.; Simor, A. Impact of infection with extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J. Hosp. Infect. 2016, 2016, 33–41. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Picón, E.; Gijón, P.; Hernández, J.R.; Ruíz, M.; Peña, C.; Almela, M.; Almirante, B.; Grill, F.; Colomina, J.; et al. Spanish Network for Research in Infectious Diseases (REIPI). Community-onset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: Risk factors and prognosis. Clin. Infect. Dis. 2010, 2010, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.I.; Wi, Y.M.; Lee, M.Y.; Ko, K.S.; Chung, D.R.; Peck, K.R.; Lee, N.Y.; Song, J.H. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J. Clin. Microbiol. 2012, 2012, 312–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.A.; Kang, C.I.; Joo, E.J.; Ha, Y.E.; Kang, S.J.; Park, S.Y.; Chung, D.R.; Peck, K.R.; Ko, K.S.; Lee, N.Y.; et al. Epidemiology and clinical features of community-onset bacteremia caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Microb. Drug Resist. 2011, 2011, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 2018, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Tansarli, G.S.; Rafailidis, P.I.; Falagas, M.E. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 2793–2803. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Navarro, M.D.; Retamar, P.; Picón, E.; Pascual, Á. Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: A post hoc analysis of prospective cohorts. Clin. Infect. Dis. 2012, 2012, 167–174. [Google Scholar] [CrossRef]
- Ofer-Friedman, H.; Shefler, C.; Sharma, S.; Tirosh, A.; Tal-Jasper, R.; Kandipalli, D.; Sharma, S.; Bathina, P.; Kaplansky, T.; Maskit, M.; et al. Carbapenems Versus Piperacillin-Tazobactam for Bloodstream Infections of Nonurinary Source Caused by Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae. Infect. Control Hosp. Epidemiol. 2015, 2015, 981–985. [Google Scholar] [CrossRef]
- Harris, P.N.; Yin, M.; Jureen, R.; Chew, J.; Ali, J.; Paynter, S.; Paterson, D.L.; Tambyah, P.A. Comparable outcomes for β-lactam/β-lactamase inhibitor combinations and carbapenems in definitive treatment of bloodstream infections caused by cefotaxime-resistant Escherichia coli or Klebsiella pneumoniae. Antimicrob. Resist. Infect. Control 2015, 2015, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Gutiérrez, B.; Pérez-Galera, S.; Salamanca, E.; de Cueto, M.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Pintado, V.; Gasch, O.; et al. A Multinational, Preregistered Cohort Study of β-Lactam/β-Lactamase Inhibitor Combinations for Treatment of Bloodstream Infections Due to Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 2016, 4159–4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viale, P.; Giannella, M.; Bartoletti, M.; Tedeschi, S.; Lewis, R. Considerations About Antimicrobial Stewardship in Settings with Epidemic Extended-Spectrum β-Lactamase-Producing or Carbapenem-Resistant Enterobacteriaceae. Infect. Dis. Ther. 2015, 4, 65–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Gutiérrez, B.; Rodríguez-Baño, J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin. Microbiol. Infect. 2019, 2019, 932–942. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [Green Version]
- Aslan, A.T.; Akova, M. Extended spectrum β-lactamase producing enterobacteriaceae: Carbapenem sparing options. Expert Rev. Anti Infect. Ther. 2019, 2019, 969–981. [Google Scholar] [CrossRef]
- Tamma, P.D.; Rodriguez-Bano, J. The Use of Noncarbapenem β-Lactams for the Treatment of Extended-Spectrum β-Lactamase Infections. Clin. Infect. Dis. 2017, 2017, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.I.; Park, S.Y.; Chung, D.R.; Peck, K.R.; Song, J.H. Piperacillin-tazobactam as an initial empirical therapy of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J. Infect. 2012, 2012, 533–534. [Google Scholar] [CrossRef]
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E.; Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteremia. Clin. Infect. Dis. 2015, 2015, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.M.; Khong, W.X.; Harris, P.N.; De, P.P.; Chow, A.; Tambyah, P.A.; Lye, D.C. Empiric Piperacillin-Tazobactam versus Carbapenems in the Treatment of Bacteraemia Due to Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae. PLoS ONE 2016, 2016, e0153696. [Google Scholar] [CrossRef]
- Gudiol, C.; Royo-Cebrecos, C.; Abdala, E.; Akova, M.; Álvarez, R.; Maestro-de la Calle, G.; Cano, A.; Cervera, C.; Clemente, W.T.; Martín-Dávila, P.; et al. BICAR Study Group. Efficacy of β-Lactam/β-Lactamase Inhibitor Combinations for the Treatment of Bloodstream Infection Due to Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae in Hematological Patients with Neutropenia. Antimicrob. Agents Chemother. 2017, 61, e00164-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.B.; Lee, J.; Kim, Y.K.; Lee, S.S.; Lee, J.A.; Kim, H.Y.; Uh, Y.; Kim, H.S.; Song, W. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect. Dis. 2017, 2017, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.K.; Kim, J.H.; Sohn, J.W.; Yang, K.S.; Kim, M.J. Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum β-lactamase-producing Escherichia coli. Int. J. Antimicrob. Agents 2017, 2017, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Lee, N.R.; Joo, E.J.; Moon, S.Y.; Choi, J.K.; Park, D.A.; Peck, K. Appropriate non-carbapenems are not inferior to carbapenems as initial empirical therapy for bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: A propensity score weighted multicenter cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Benanti, G.E.; Brown, A.R.T.; Shigle, T.L.; Tarrand, J.J.; Bhatti, M.M.; McDaneld, P.M.; Shelburne, S.A.; Aitken, S.L. Carbapenem versus Cefepime or Piperacillin-Tazobactam for Empiric Treatment of Bacteremia Due to Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Patients with Hematologic Malignancy. Antimicrob. Agents Chemother. 2019, 63, e01813-18. [Google Scholar] [CrossRef] [Green Version]
- John, R.; Colley, P.; Nguyen, H.L.; Berhe, M. Outcomes analysis in patients with extended-spectrum beta-lactamase bacteremia empirically treated with piperacillin/tazobactam versus carbapenems. Bayl. Univ. Med. Center Proc. 2019, 2019, 187–191. [Google Scholar] [CrossRef]
- Nasir, N.; Ahmed, S.; Razi, S.; Awan, S.; Mahmood, S.F. Risk factors for mortality of patients with ceftriaxone resistant E. coli bacteremia receiving carbapenem versus beta lactam/beta lactamase inhibitor therapy. BMC Res. Notes 2019, 2019, 611. [Google Scholar] [CrossRef] [Green Version]
- Sharara, S.L.; Amoah, J.; Pana, Z.D.; Simner, P.J.; Cosgrove, S.E.; Tamma, P.D. Is Piperacillin-Tazobactam Effective for the Treatment of Pyelonephritis Caused by ESBL-producing Organisms? Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef]
- López-Cerero, L.; Picón, E.; Morillo, C.; Hernández, J.R.; Docobo, F.; Pachón, J.; Rodríguez-Baño, J.; Pascual, A. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates. Clin. Microbiol. Infect. 2010, 2010, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Son, S.K.; Lee, N.R.; Ko, J.H.; Choi, J.K.; Moon, S.Y.; Joo, E.J.; Peck, K.R.; Park, D.A. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, M.; Askin, G.; Christos, P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: Systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 2018, 554–570. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.S.; Moland, E.S. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2001, 2001, 3548–3554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, M.K.; Won, S.Y. Carbapenem-Sparing Therapy for Extended-Spectrum β-Lactamase-Producing E coli and Klebsiella pneumoniae Bloodstream Infection: The Search Continues. JAMA 2018, 2018, 979–981. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; et al. ISGRI-SITA (Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva). Ceftolozane/tazobactam: Place in therapy. Expert Rev. Anti Infect. Ther. 2018, 2018, 307–320. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Mendes, R.E.; Sader, H.S. Comparative Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Enterobacteriaceae Isolates Producing Extended-Spectrum β-Lactamases from U.S. Hospitals. Antimicrob. Agents Chemother. 2019, 63, e00160-19. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Bare, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Popejoy, M.W.; Paterson, D.L.; Cloutier, D.; Huntington, J.A.; Miller, B.; Bliss, C.A.; Steenbergen, J.N.; Hershberger, E.; Umeh, O.; Kaye, K.S. Efficacy of ceftolozane/tazobactam against urinary tract andintra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: A pooled analysis of Phase 3 clinical trials. J. Antimicrob. Chemother. 2017, 72, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.P.; Dan Do, T.N.; Bruggemann, R.; Ten Oever, J.; Kolwijck, E.; Adang, E.M.M.; Wertheim, H.F.L. Clinical cure rate and cost-effectiveness of carbapenem-sparing beta-lactams vs. meropenem for Gram-negative infections: A systematic review, meta-analysis, and cost-effectiveness analysis. Int. J. Antimicrob. Agents 2019, 2019, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 2019, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, I.; Galani, I.; Souli, M.; Giamarellou, H. Novel β-lactam-β-lactamase inhibitor combinations: Expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin. Drug Metab. Toxicol. 2019, 2019, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012–2015. J. Antimicrob. Chemother. 2018, 2018, 2777–2781. [Google Scholar] [CrossRef]
- Mendes, R.; Castanheira, M.; Gasink, L.; Stone, G.G.; Nichols, W.W.; Flamm, R.K.; Jones, R.N. β-Lactamase Characterization of Gram-Negative Pathogens Recovered from Patients Enrolled in the Phase 2 Trials for Ceftazidime-Avibactam: Clinical Efficacies Analyzed against Subsets of Molecularly Characterized Isolates. Antimicrob. Agents Chemother. 2015, 2015, 1328–1335. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.E.; Castanheira, M.; Woosley, L.N.; Stone, G.G.; Bradford, P.A.; Flamm, R.K. Molecular β-lactamase characterization of Gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials (RECAPTURE 1 and 2) for complicated urinary tract infections: Efficacies analysed against susceptible and resistant subsets. Int. J. Antimicrob. Agents 2018, 2018, 287–292. [Google Scholar] [CrossRef]
- Chastain, D.B.; White, B.P.; Cretella, D.A.; Bland, C.M. Is It Time to Rethink the Notion of Carbapenem-Sparing Therapy Against Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Bloodstream Infections? A Critical Review. Ann. Pharmacother. 2018, 2018, 484–492. [Google Scholar] [CrossRef]
- Lee, C.H.; Su, L.H.; Tang, Y.F.; Liu, J.W. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: A retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemother. 2006, 2006, 1074–1077. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.C.; Li, S.H.; Chuang, F.R.; Chen, C.H.; Lee, C.H.; Chen, J.B.; Wu, C.H.; Lee, C.T. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect. Dis. 2012, 2012, 206. [Google Scholar] [CrossRef] [Green Version]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 2013, e159–e163. [Google Scholar] [CrossRef] [Green Version]
- Pilmis, B.; Parize, P.; Zahar, J.R.; Lortholary, O. Alternatives to carbapenems for infections caused by ESBL-producing Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 2014, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Shimizu, T.; Watanabe, H.; Doi, S.; Tanaka, M.; et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-β-lactamase-producing Escherichia coli bacteremia. Antimicrob. Agents Chemother. 2015, 2015, 5107–5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Su, L.H.; Chen, F.J.; Tang, Y.F.; Li, C.C.; Chien, C.C.; Liu, J.W. Comparative effectiveness of flomoxef versus carbapenems in the treatment of bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. Int. J. Antimicrob. Agents 2015, 2015, 610–615. [Google Scholar] [CrossRef]
- Fukuchi, T.; Iwata, K.; Kobayashi, S.; Nakamura, T.; Ohji, G. Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC Infect. Dis. 2016, 2016, 427. [Google Scholar] [CrossRef] [Green Version]
- Senard, O.; Lafaurie, M.; Lesprit, P.; Nguyen, Y.; Lescure, X.; Therby, A.; Fihman, V.; Oubaya, N.; Lepeule, R. Efficacy of cefoxitin versus carbapenem in febrile male urinary tract infections caused by extended spectrum beta-lactamase-producing Escherichia coli: A multicenter retrospective cohort study with propensity score analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2019. [CrossRef]
- Endimiani, A.; Perez, F.; Bonomo, R.A. Cefepime: A reappraisal in an era of increasing antimicrobial resistance. Expert Rev. Anti Infect. Ther. 2008, 6, 805–824. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0. 2019. Available online: http://www.eucast.org (accessed on 29 December 2019).
- Bhat, S.V.; Peleg, A.Y.; Lodise, T.P., Jr.; Shutt, K.A.; Capitano, B.; Potoski, B.A.; Paterson, D.L. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram-negative organisms. Antimicrob. Agents Chemother. 2007, 51, 4390–4395. [Google Scholar] [CrossRef] [Green Version]
- Thauvin-Eliopoulos, C.; Tripodi, M.; Moellering, R.C., Jr.; Eliopoulos, G.M. Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 1997, 1997, 1053–1057. [Google Scholar] [CrossRef] [Green Version]
- Burgess, D.S.; Hall, R.G., 2nd. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 2004, 2004, 41–46. [Google Scholar] [CrossRef]
- Smith, K.P.; Kirby, J.E. The Inoculum Effect in the Era of Multidrug Resistance: Minor Differences in Inoculum Have Dramatic Effect on MIC Determination. Antimicrob. Agents Chemother. 2018, 62, e00433-18. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, G.; Bally, F.; Greub, G.; Garbino, J.; Kinge, T.; Lew, D.; Romand, J.A.; Bille, J.; Aymon, D.; Stratchounski, L.; et al. Cefepime Study Group. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: A multicenter, evaluator-blind, prospective, randomized study. Antimicrob. Agents Chemother. 2003, 2003, 3442–3447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goethaert, K.; Van Looveren, M.; Lammens, C.; Jansens, H.; Baraniak, A.; Gniadkowski, M.; Van Herck, K.; Jorens, P.G.; Demey, H.E.; Ieven, M.; et al. High-dose cefepime as an alternative treatment for infections caused by TEM-24 ESBL-producing Enterobacter aerogenes in severely-ill patients. Clin. Microbiol. Infect. 2006, 2006, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, T.; Marchaim, D.; Veltman, J.; Johnson, P.; Zhao, J.J.; Tansek, R.; Hatahet, D.; Chaudhry, K.; Pogue, J.M.; Rahbar, H.; et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob. Agents Chemother. 2012, 2012, 3936–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.Y.; Lee, C.C.; Huang, W.H.; Tsui, K.C.; Hsueh, P.R.; Ko, W.C. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin. Infect. Dis. 2013, 2013, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Cosgrove, S.E.; Tschudin-Sutter, S.; Han, J.H.; Turnbull, A.E.; Hsu, A.J.; Avdic, E.; Carroll, K.C.; Tamma, P.D. Cefepime Therapy for Cefepime-Susceptible Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Bacteremia. Open Forum Infect. Dis. 2016, 2016, ofw132. [Google Scholar] [CrossRef]
- Lee, N.Y.; Lee, C.C.; Li, C.W.; Li, M.C.; Chen, P.L.; Chang, C.M.; Ko, W.C. Cefepime Therapy for Monomicrobial Enterobacter cloacae Bacteremia: Unfavorable Outcomes in Patients Infected by Cefepime-Susceptible Dose-Dependent Isolates. Antimicrob. Agents Chemother. 2015, 2015, 7558–7563. [Google Scholar] [CrossRef] [Green Version]
- Suh, J.W.; Yang, K.S.; Kim, S.B.; Kim, J.H.; Sohn, J.W.; Kim, M.J.; Yoon, Y.K. The use of cefepime as a carbapenem-sparing antibiotic for treating uncomplicated acute pyelonephritis caused by extended-spectrum β-lactamase producing Escherichia coli. Infect. Dis. 2018, 2018, 241–244. [Google Scholar] [CrossRef]
- Kim, S.; Altshuler, J.; Paris, D.; Fedorenko, M. Cefepime versus carbapenems for the treatment of urinary tract infections caused by extended-spectrum β-lactamase-producing enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 2018, 155–158. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin. Pharmacother. 2014, 2014, 1351–1370. [Google Scholar] [CrossRef]
- Duployez, C.; Loïez, C.; Cattoen, C.; Wallet, F.; Vachée, A. In vitro activity of temocillin against extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains isolated from urinary tract infections in France. Med. Mal. Infect. 2019, 2019, 47–53. [Google Scholar] [CrossRef]
- Alexandre, K.; Réveillon-Istin, M.; Fabre, R.; Delbos, V.; Etienne, M.; Pestel-Caron, M.; Dahyot, S.; Caron, F. Temocillin against Enterobacteriaceae isolates from community-acquired urinary tract infections: Low rate of resistance and good accuracy of routine susceptibility testing methods. J. Antimicrob. Chemother. 2018, 2018, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, I.; Awad-El-Kariem, F.M.; Aali, A.; Kumari, P.; Mulla, R.; Tan, B.; Brudney, D.; Ladenheim, D.; Ghazy, A.; Khan, I.; et al. Temocillin use in England: Clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2011, 2011, 2628–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laterre, P.F.; Wittebole, X.; Van de Velde, S.; Muller, A.E.; Mouton, J.W.; Carryn, S.; Tulkens, P.M.; Dugernier, T. Temocillin (6 g daily) in critically ill patients: Continuous infusion versus three times daily administration. J. Antimicrob. Chemother. 2015, 2015, 891–898. [Google Scholar] [CrossRef]
- Woerther, P.L.; Lepeule, R.; Burdet, C.; Decousser, J.W.; Ruppé, É.; Barbier, F. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance? Int. J. Antimicrob. Agents 2018, 2018, 762–770. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Machuca, J.; Cano, M.E.; Calvo, J.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Updat. 2016, 2016, 13–29. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lagacé-Wiens, P.R.S.; Adam, H.J.; Baxter, M.R.; Laing, N.M.; Walkty, A.J.; Zhanel, G.G. In vitro susceptibility of urinary Escherichia coli isolates to first- and second-line empirically prescribed oral antimicrobials: Canward surveillance study results for Canadian outpatients, 2007–2016. Int. J. Antimicrob. Agents 2019, 2019, 62–68. [Google Scholar] [CrossRef]
- Albert, M.; Yagüe, G.; Fernández, M.; Viñuela, L.; Segovia, M.; Muñoz, J.L. Prevalence of plasmid-mediated quinolone resistance determinants in extended-spectrum β-lactamase-producing and -non-producing enterobacteria in Spain. Int. J. Antimicrob. Agents 2014, 43, 390–391. [Google Scholar] [CrossRef]
- Lo, C.L.; Lee, C.C.; Li, C.W.; Li, M.C.; Hsueh, P.R.; Lee, N.Y.; Ko, W.C. Fluoroquinolone therapy for bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Microbiol. Immunol. Infect. 2017, 2017, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Endimiani, A.; Luzzaro, F.; Perilli, M.; Lombardi, G.; Colì, A.; Tamborini, A.; Amicosante, G.; Toniolo, A. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: Treatment outcome of patients receiving imipenem or ciprofloxacin. Clin. Infect. Dis. 2004, 2004, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 2007, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Meije, Y.; Pigrau, C.; Fernández-Hidalgo, N.; Clemente, M.; Ortega, L.; Sanz, X.; Loureiro-Amigo, J.; Sierra, M.; Ayestarán, A.; Morales-Cartagena, A.; et al. Non-intravenous carbapenem-sparing antibiotics for definitive treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase: A propensity score study. Int. J. Antimicrob. Agents 2019, 54, 189–196. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). FDA Updates Warnings for Fluoroquinolone Antibiotics on Risks of Mental Health and Low Blood Sugar Adverse Reactions. Available online: https://www.fda.gov/news-events/press-announcements/fda-updates-warnings-fluoroquinolone-antibiotics-risks-mental-health-and-low-blood-sugar-adverse (accessed on 29 December 2019).
- Sutherland, C.A.; Verastegui, J.E.; Nicolau, D.P. In vitro potency of amikacin and comparators against E. coli, K. pneumoniae and P. aeruginosa respiratory and blood isolates. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 39. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, M.; Ruiz Del Castillo, B.; Lecea-Cuello, M.J.; Rodríguez-Baño, J.; Pascual, Á.; Martínez-Martínez, L. Spanish Network for the Research in Infectious Diseases (REIPI) and the Spanish Group for Nosocomial Infections (GEIH). Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia coli and Klebsiella pneumoniae Producing Extended Spectrum β-Lactamases Collected in Two Multicenter Studies in Spain. Microb. Drug Resist. 2018, 2018, 367–376. [Google Scholar] [CrossRef]
- Bouxom, H.; Fournier, D.; Bouiller, K.; Hocquet, D.; Bertrand, X. Which non-carbapenem antibiotics are active against extended-spectrum β-lactamase-producing Enterobacteriaceae? Int. J. Antimicrob. Agents 2018, 2018, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Vidal, L.; Gafter-Gvili, A.; Borok, S.; Fraser, A.; Leibovici, L.; Paul, M. Efficacy and safety of aminoglycoside monotherapy: Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2007, 2007, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Baena, Z.R.; Gutiérrez-Gutiérrez, B.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Pintado, V.; Gasch, O.; Martínez-Martínez, L.; Pitout, J.; et al. Spanish Network for Research in Infectious Diseases (REIPI)/European Study Group of Bloodstream Infections and Sepsis (ESGBIS)/INCREMENT Group. Empiric Therapy with Carbapenem-Sparing Regimens for Bloodstream Infections due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Results from the Increment Cohort. Clin. Infect. Dis. 2017, 2017, 1615–1623. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Gutiérrez-Gutiérrez, B.; De Cueto, M.; Viale, P.; Venditti, M.; Hernández-Torres, A.; Oliver, A.; Martínez-Martínez, L.; Calbo, E.; Pintado, V.; et al. Reipi/Esgbis/Increment Group. Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-β-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 2017, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Zohar, I.; Schwartz, O.; Yossepowitch, O.; David, S.S.B.; Maor, Y. Aminoglycoside versus carbapenem or piperacillin/tazobactam treatment for bloodstream infections of urinary source caused by Gram-negative ESBL-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2019. [Google Scholar] [CrossRef]
- Karaiskos, I.; Souli, M.; Giamarellou, H. Plazomicin: An investigational therapy for the treatment of urinary tract infections. Expert Opin. Investig. Drugs 2015, 2015, 1501–1511. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Drug Approval Package: Zemdri (Plazomicin). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210303Orig1s000MedR.pdf (accessed on 29 December 2019).
- Rodloff, A.C.; Dowzicky, M.J. Chemotherapy. Antimicrobial Susceptibility among European Gram-Negative and Gram-Positive Isolates Collected as Part of the Tigecycline Evaluation and Surveillance Trial (2004–2014). Chemotherapy 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Giamarellou, H.; Poulakou, G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin. Drug Metab. Toxicol. 2011, 2011, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Heizmann, W.R.; Löschmann, P.A.; Eckmann, C.; von Eiff, C.; Bodmann, K.F.; Petrik, C. Clinical efficacy of tigecycline used as monotherapy or in combination regimens for complicated infections with documented involvement of multiresistant bacteria. Infection 2015, 2015, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulakou, G.; Kontopidou, F.V.; Paramythiotou, E.; Kompoti, M.; Katsiari, M.; Mainas, E.; Nicolaou, C.; Yphantis, D.; Antoniadou, A.; Trikka-Graphakos, E.; et al. Tigecycline in the treatment of infections from multi-drug resistant gram-negative pathogens. J. Infect. 2009, 2009, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Tasina, E.; Haidich, A.B.; Kokkali, S.; Arvanitidou, M. Efficacy and safety of tigecycline for the treatment of infectious diseases: A meta-analysis. Lancet Infect. Dis. 2011, 2011, 834–844. [Google Scholar] [CrossRef]
- Shen, F.; Han, Q.; Xie, D.; Fang, M.; Zeng, H.; Deng, Y. Efficacy and safety of tigecycline for the treatment of severe infectious diseases: An updated meta-analysis of RCTs. Int. J. Infect. Dis. 2015, 2015, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Routsi, C.; Kokkoris, S.; Douka, E.; Ekonomidou, F.; Karaiskos, I.; Giamarellou, H. High-dose tigecycline-associated alterations in coagulation parameters in critically ill patients with severe infections. Int. J. Antimicrob. Agents 2015, 2015, 90–93. [Google Scholar] [CrossRef]
- Huband, M.D.; Pfaller, M.A.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. J. Glob. Antimicrob. Resist. 2019, 2019, 56–63. [Google Scholar] [CrossRef]
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2019. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration (FDA). Drug Approval Package: XERAVA (Eravacycline). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211109Orig1s000TOC.cfm (accessed on 29 December 2019).
- European Medicines Agency (EMA). XERAVA (Eravacycline). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xerava (accessed on 29 December 2019).
- Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 2019, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect. Dis. 2010, 2010, 43–50. [Google Scholar] [CrossRef]
- Babiker, A.; Clarke, L.; Doi, Y.; Shields, R.K. Fosfomycin for treatment of multidrug-resistant pathogens causing urinary tract infection: A real-world perspective and review of the literature. Diagn. Microbiol. Infect. Dis. 2019, 2019, 114856. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 2019, 2045–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosso-Fernández, C.; Sojo-Dorado, J.; Barriga, A.; Lavín-Alconero, L.; Palacios, Z.; López-Hernández, I.; Merino, V.; Camean, M.; Pascual, A.; Rodríguez-Baño, J. Forest Study Group. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): Study protocol for an investigator-driven randomised controlled trial. BMJ Open 2015, 2015, e007363. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Walkty, A.J.; Karlowsky, J.A. Fosfomycin: A First-Line Oral Therapy for Acute Uncomplicated Cystitis. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 2082693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, I.; Galani, L.; Sakka, V.; Gkoufa, A.; Sopilidis, O.; Chalikopoulos, D.; Alivizatos, G.; Giamarellou, E. Oral fosfomycin for the treatment of chronic bacterial prostatitis. J. Antimicrob. Chemother. 2019, 2019, 1430–1437. [Google Scholar] [CrossRef] [Green Version]
Study | Country of Study (Period of Study) | Study Design | PTZ (n, Number of Participants) | Carbapenems (n, Number of Participants) | Organism(s) | Site of Infection | Severity of Illness at Infection Onset | Outcome (PTZ vs Carbapenems) | Comments |
---|---|---|---|---|---|---|---|---|---|
Rodríguez-Baño et al. a [10] | Spain (2001–2006) | Post hoc analysis of 6 prospective cohorts | Empiric: n = 35 Definitive: n = 18 | Empiric: n = 31 Definitive: n = 120 | Escherichia coli (100%) | BSI (100%) -urinary or biliary (70%) | ICU: 13% Severe sepsis or shock: 23% | 30-day mortality (empiric): 10% vs 19% (ns) 30-day mortality (definitive): 9% vs 17% (ns) | No association between either empirical or definitive therapy with PTZ and increased mortality |
Kang et al. [19] | Korea (2008–2010) | Retrospective | n = 36 | n = 78 | E. coli (68%) Klebsiella pneumoniae (32%) | BSI (100%) | NR | 30-day mortality: 22% vs 27% (ns) | No difference between PTZ and carbapenem treatment |
Tamma et al. [20] | USA (2007–2014) | Retrospective | n = 103 | n = 110 | K. pneumoniae (68%) E. coli (31%) Proteus mirabilis (1%) | BSI (100%) -CRBSI (46%) -UTI (21%) -cIAI (17%) -Biliary (9%) -pneumonia (9%) | ICU:34% Neutropenia: 15% | 14-day mortality: 17% vs 8% (p < 0.05) 30-day mortality: 26% vs 11% (p < 0.01) | PTZ inferior to carbapenems for the treatment of ESBL bacteremia. Risk of death 1.92 times higher for patients on empiric PTZ therapy |
Ofer-Friedman et al. [11] | Multicenter (USA, Israel) (2008–2012) | Retrospective | n = 10 | n = 69 | E. coli (53%) K. pneumoniae (28%) P. mirabilis (19%) | BSI (100%) -pneumonia (34%) -SSTI (28%) -Biliary (17%) -cIAI (9%) | Rapid fatal condition per McCabe score: 39% | 30-day mortality: 60% vs 34% (p = 0.10) 90-day mortality: 80% vs 48% (p = 0.05) | Therapy with PTZ was associated with increased 90-day mortality (adjusted OR, 7.9. p = 0.03) |
Harris et al. [12] | Singapore (2012–2013) | Retrospective | n = 24 | n = 23 | E. coli (86%) K. pneumoniae (14%) | BSI (100%) -UTI (47%) -Biliary (9%) | ICU: 15% | 30-day mortality: 8% vs 17% (ns) | No difference between PTZ and carbapenem treatment |
Gutiérrez-Gutiérrez et al. a [13] | INCREMENT international project (2004–2013) | Retrospective | Empiric: n = 123 Definitive: n = 60 | Empiric: n = 195 Definitive: n = 509 | E. coli (73%) K. pneumoniae (19%) | BSI (100%) -UTI (45%) -Biliary (12%) | ICU: 11% Severe sepsis or shock: 32% | 30-day mortality (empiric): 18% vs 20% (ns) 30-day mortality (definitive): 10% vs 14% (ns) | No association between either empirical or definitive therapy with PTZ and increased mortality |
Ng et al. [21] | Singapore (2011–2013) | Retrospective | n = 94 | n = 57 | E. coli (67%) K. pneumoniae (33%) | BSI (100%) -UTI (59%) -Biliary (9%) -Pneumonia (9%) -cIAI (5%) -CRBSI (4%) | ICU: 9% | 30-day mortality: 31% vs 30% (ns) | No difference between PTZ and carbapenem treatment |
Gudiol et al.a [22] | Multicenter (2006–2015) | Retrospective | Empiric: n = 44 Definitive: n = 12 | Empiric: n = 126 Definitive: n = 234 | E. coli (74%) K. pneumoniae (23%) K. oxytoca (1.5%) Enterobacter cloacae (1.5%) | BSI (100%) -Primary (53%) -CRBSI (18%) -cIAI (15%) -UTI (7%) | ICU: 18% Septic shock: 22% Hematological neutropenic patients: 100% | 30-day mortality (empiric): 21% vs 13% (ns) 30-day mortality (definitive): 6% vs 16% (ns) | PTZ appeared to have similar efficacy to carbapenems in hematological neutropenic patients |
Seo et al. [23] | Korea (2013–2015) | Randomized trial | n = 33 | n = 33 | E. coli (100%) | UTI (100%) BSI (11%) | Septic shock: 30% | 28-day mortality: 6.1% vs 6.1% (ns) | PTZ appeared to have similar efficacy to ertapenem in UTIs |
Yoon et al. [24] | Korea (2011–2013) | Retrospective | n = 68 | n = 82 | E. coli (100%) | UTI (100%) BSI (15%) | ICU: 25% Septic shock: 16% | In-hospital mortality: 4.4% vs 13% (ns) | PTZ appeared to have similar efficacy to ertapenem in UTIs |
Ko et al. a [25] | Korea (2010–2014) | Retrospective | n = 41 | n = 183 | E. coli (66%) K. pneumoniae (34%) | BSI (100%) -Primary (24%) -CRBSI (3%) -UTI (37%) -cIAI (28%) | ICU: 33% | 30-day mortality: 6.3% vs 11.4% (ns) | No difference between PTZ and carbapenem treatment |
Harris et al. [26] | International, multicenter (2014–2017) | Randomized trial | n = 188 | n = 191 | E. coli (87%) K. pneumoniae (13%) | BSI (100%) - UTI (61%) -cIAI (16%) -CRBSI (2%) -Pneumonia (3%) -Mucositis (5%) -SSTI (1%) | ICU: 7% Neutropenia: 7% | 30-day mortality: 12.3% vs 3.7% (p = 0.90) | Definitive treatment with PTZ compared with meropenem did not result in a non-inferior 30-day mortality |
Benanti et al. [27] | USA (2008–2015) | Retrospective | n = 21 | n = 42 | E. coli (100%) | BSI (100%) - cIAI (40%) -UTI (10%) -CRBSI (11%) -Pneumonia (11%) -SSTI (10%) | ICU: 30% Neutropenia: 89% | 14-day mortality: 0% vs 19% (p = 0.04) | Empiric treatment with PTZ not associated with increased mortality in patients with hematologic malignancy |
John et al. [28] | USA (2014–2017) | Retrospective | n = 66 | n = 51 | E. coli (86%) K. pneumoniae (14%) | BSI (100%) -UTI (73%) -cIAI (19%) -Pneumonia (1%) | ICU: 38% Septic shock:17% | In-hospital mortality: 3% vs 7.8% (ns) | PTZ appeared to have similar efficacy to carbapenems |
Nasir et al. a [29] | Pakistan (2015–2017) | Retrospective | n = 89 | n = 174 | E. coli (100%) | BSI (100%) -UTI (66%) -cIAI (23%) -CRBSI (3%) | ICU: 38% Septic shock:17% | In-hospital mortality: 13% vs 21% (ns) | PTZ appeared to have similar efficacy to carbapenems |
Sharara et al. [30] | USA (2014–2016) | Retrospective | n = 45 | n = 141 | E. coli (56%) K. pneumoniae (30%) P. mirabilis (10%) K. oxytoca (4%) | UTI (100%) | ICU: 26% | 30-day mortality: 4% vs 7% (ns) | PTZ appeared to have similar efficacy to carbapenems. Patients treated with carbapenem had higher incident of carbapenem-resistant organism isolated in 60 d (p = 0.09) |
Study | Country of Study (Period of Study) | Study Design | Cephamycin (n, Number of Participants) | Carbapenems (n, Number of Participants) | Organism(s) | Site of Infection | Severity of Illness at Infection Onset | Outcome (Cephamycins vs Carbapenems) | Comments |
---|---|---|---|---|---|---|---|---|---|
Lee et al. [49] | Taiwan (2004–2005) | Retrospective | n = 7 (flomoxef) | n = 20 | K. pneumoniae (100%) | BSI (100%) | ICU: 52% | 14-day mortality: 29% vs 25% (ns) | No difference between cephamycin and carbapenem treatment. Patients in the carbapenem group were more severely ill |
Yang et al. [50] | Taiwan (2001–2007) | Retrospective | n = 29 (flomoxef) | n = 28 | K. pneumoniae (100%) | BSI (100%) | ICU: 51% | 14-day mortality: 55% vs 39% (p < 0.05) | Hemodialysis access-related bacteremia included in the study. Cephamycin use was independently associated with increased mortality (OR, 3.52; 95% CI, 1.19–58.17) |
Doi et al. [51] | Japan (2008–2010) | Retrospective | n = 10 (cefmetazole) | n = 12 | E. coli (95%) K. pneumoniae (5%) | UTI (100%) | NR | Clinical cure (4-weeks): 90% vs 100% (ns) | No difference in clinical or bacteriological cure rate at 4 w |
Pilmis et al. [52] | France (2011) | Retrospective | n = 8 (cefoxitin) | n = 31 | E. coli (32%) K. pneumoniae (32%) E. cloacae (36%) | UTI (75%) BSI (25%) | NR | Clinical and microbiological relapse (30-days): 13% vs 23% (ns) | No difference between cephamycin and carbapenem treatment |
Matsumura et al. [53] | Japan (2005–2014) | Retrospective | Empiric, n = 8 Definitive, n = 59 (cefmetazole or flomoxef) | Empiric, n = 45 Definitive, n = 54 | E. coli (100%) | BSI (100%) | Septic shock: 41% | 30-day mortality (empiric arm): 8% vs 9% (ns) 30-day mortality (definitive arm): 5% vs 9% (ns) | No difference between cephamycin and carbapenem treatment |
Lee et al. [54] | Taiwan (2007–2012) | Retrospective | n = 123 (flomoxef) | n = 257 | K. pneumoniae (60%) E. coli (40%) | BSI (100%) | Pitt bacteremia score ≥4: 66% | 30-day mortality: 28.8% vs 12.8% | Definitive flomoxef therapy appears to be inferior to carbapenems, particularly for isolates with a MIC flomoxef of 2–8 mg/L |
Fukuchi et al. [55] | Japan (2008–2013) | Retrospective | n = 26 (cefmetazole) | n = 43 | E. coli (94%) K. pneumoniae (3%) K. oxytoca (3%) | BSI (100%) | ICU: 32% | 30-day mortality: 4% vs 16% (ns) | No difference between cephamycin and carbapenem treatment. The group that received carbapenem therapy had increased severity |
Senard et al. [56] | France (2013–2015) | Retrospective | n = 23 (cefoxitin) | n = 27 | E. coli (100%) | UTI (100%) | Septic shock: 4% | Clinical success: 73.9% vs 81.5% (ns) Clinical success: 57.9% vs 50% (ns) | No difference between cephamycin and carbapenem treatment. In the cephamycin group, continuous infusion was associated with clinical success |
Study | Country of Study (Period of Study) | Study design | Cefepime (n, Number of Participants) (Dosage) | Carbapenems (n, Number of Participants) (Dosage) | Organism(s) | Site of Infection | Severity of Illness at Infection Onset | Outcome (Cefepime vs Carbapenems) | Comments |
---|---|---|---|---|---|---|---|---|---|
Zanetti et al. [64] | Six European countries (1997–1999) | Randomized trial | n = 13 (2 gr q8h) | n = 10 (IMP 500 mg q6h) | K. pneumoniae (96%) E. aerogenes (4%) | Pneumonia (100%) | ICU (100%) | Clinical response: 69% vs 100% (p < 0.05) | Comparison for ESBL producers not included |
Goethaert et al. [65] | Belgium (1994–2000) | Retrospective | n = 21 (2 gr q8h) | n = 23 (IMP 500 mg q6h, MEM 1 gr q8h) | E. aerogenes (TEM-24) | Pneumonia (64%) BSI (16%) cIAI (14%) UTI (5%) Other (0.3%) | ICU (100%) | Clinical response: 62% vs 70% 30-day mortality: 33% vs 26% (ns) | No statistically significant differences in the outcome for the cefepime and carbapenem-treated groups |
Chopra et al. [66] | USA (2005–2007) | Retrospective | Empiric: monotherapy n = 43 Definitive: monotherapy n = 9 (NR) | Empiric: monotherapy n = 14 Definitive: monotherapy n = 33 (NR) | K. pneumoniae (83%) E. coli (17%) | BSI (100%) -CRBSI (75%) | ICU (41%) | In-hospital mortality Empiric: 40% vs 36% (ns) Definitive: 33% vs 36% (ns) | Trend toward increased mortality risk with empiric cefepime therapy |
Lee et al. [67] | Taiwan (2002–2007) | Retrospective | Empiric: n = 21 Definitive: n = 17 (1–2 g q8h) | Empiric: n = 91 Definitive: n = 161 (IMP 500 mg q6h, MEM 1 gr q8h, ETP 1 g q24h) | E. cloacae (55%) E. coli (24%) K. pneumoniae (21%) | BSI (100%) -Primary (14%) -CRBSI (21%) -Pneumonia (24%) -UTI (22%) -cIAI (16%) -SSTI (6%) | McCabe (Rapidly fatal): 11% Pitt score ≥ 4: 67% | 30-day mortality: Definitive therapy: 59% vs 17% (p = 0.01) Crude mortality: 65% vs 37% (p = 0.04) | Cefepime definitive therapy inferior to carbapenem therapy, 30-day mortality was lower when cefepime MIC≤ 1 mg/L |
Wang et al. [68] | USA (2006–2015) | Retrospective | n = 17 (1–2 g q8h) | n = 51 (IMP 500 mg q6h, MEM 1 gr q8h, ETP 1 g q24h) | Klebsiella spp. (63%) E. coli (32%) P. mirabilis (3%) | BSI (100%) -CRBSI (44%) -UTI (31%) -Biliary (9%) -Pneumonia (15%) -cIAI: (13%) -SSTI: (3%) | ICU (29%) | 14-day mortality: 41% vs 20% (p = 0.08) | Risk of death was 2.87 times higher for patients receiving cefepime compared with carbapenems |
Lee et al. [69] | Taiwan (2008–2012) | Retrospective | Definitive: n = 42 (1–2 g q12h or q8h) | Definitive: n = 53 (IMP 500 mg q6h, MEM 1 gr q8h, ETP 1g q24h) | E. cloacae (100%) | BSI (100%) -CRBSI (37%) -Primary (31%) -Pneumonia (9%) -UTI (8%) -cIAI: (8%) -SSTI: (6%) | McCabe (Rapidly fatal): 15% Pitt score ≥ 4: 39% | 30-day mortality: 26.4% vs 22.2% (ns) 30-day mortality (bacteremia due to ESBL): 100% vs 42.9% (p = 0.015) | Comparison for definitive therapy due to ESBL bacteremia with cefepime SDD isolates only reported |
Benanti et al. [27] | USA (2008–2015) | Retrospective | n = 40 (2 g q8h) | n = 42 (MEM 1 g q8h) | E. coli (100%) | BSI (100%) -CRBSI (19%) -Primary (16%) -Pneumonia (9%) -UTI (7%) -cIAI (43%) -SSTI (6%) | ICU: 26% Leukemia:79% Prior HCT: 50% | 14-day mortality: 8% vs 19% (ns) | No difference between cefepime and carbapenem therapy |
Seo et al. [23] | Korea | Randomized trial | n = 6 (2 g q12h) | n = 33 (ETP 1 g q24h) | E. coli (100%) | UTI (100%) | Charlson index: 5 Septic shock: 33% | Clinical and microbiological response: 33.3% vs 97% (p < 0.01) | Cefepime therapy inferior to carbapenem therapy |
Suh et al. [70] | Korea (2014–2016) | Retrospective | n = 54 (2 g q8h or q12h) | n = 101 (ETP 1 g q24h) | E. coli (100%) | UTI (100%) | Charlson index: 2 Septic shock: 6.5% | In-hospital mortality: 9.3% vs 9.9% (ns) | No difference between cefepime and carbapenem therapy |
Kim et al. [71] | USA (2014–2017) | Retrospective | n = 17 (1–2 g q12h or 2g q8h) | n = 89 (NR) | E. coli (82%) K. pneumoniae (18%) | UTI (100%) | ICU: 13% | Clinical and microbiological response: 100% vs 100% (ns) Relapse (30-day): 0% vs 7% | Comparable effectiveness between cefepime and carbapenems for UTIs |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. https://doi.org/10.3390/antibiotics9020061
Karaiskos I, Giamarellou H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics. 2020; 9(2):61. https://doi.org/10.3390/antibiotics9020061
Chicago/Turabian StyleKaraiskos, Ilias, and Helen Giamarellou. 2020. "Carbapenem-Sparing Strategies for ESBL Producers: When and How" Antibiotics 9, no. 2: 61. https://doi.org/10.3390/antibiotics9020061
APA StyleKaraiskos, I., & Giamarellou, H. (2020). Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics, 9(2), 61. https://doi.org/10.3390/antibiotics9020061