Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences
Abstract
:1. Introduction
2. Ceftolozane/Tazobactam
3. Ceftazidime/Avibactam
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trecarichi, E.M.; Tumbarello, M. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: Current epidemiology and clinical impact. Curr. Opin. Infect. Dis. 2014, 27, 200–210. [Google Scholar] [CrossRef]
- Montassier, E.; Batard, E.; Gastinne, T.; Potel, G.; de La Cochetière, M.F. Recent changes in bacteremia in patients with cancer: A systematic review of epidemiology and antibiotic resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 841–850. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Pagano, L.; Martino, B.; Candoni, A.; Di Blasi, R.; Nadali, G.; Fianchi, L.; Delia, M.; Sica, S.; Perriello, V.; et al. Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: Clinical impact of carbapenem resistance in a multicentre prospective survey. Am. J. Hematol. 2016, 91, 1076–1081. [Google Scholar] [CrossRef]
- Scheich, S.; Weber, S.; Reinheimer, C.; Wichelhaus, T.A.; Hogardt, M.; Kempf, V.A.J.; Kessel, J.; Serve, H.; Steffen, B. Bloodstream infections with gram-negative organisms and the impact of multidrug resistance in patients with hematological malignancies. Ann. Hematol. 2018, 97, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Gudiol, C.; Bodro, M.; Simonetti, A.; Tubau, F.; González-Barca, E.; Cisnal, M.; Domingo-Domenech, E.; Jimenez, L.; Carratala, J. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin. Microbiol. Infect. 2013, 19, 474–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trecarichi, E.M.; Pagano, L.; Candoni, A.; Pastore, D.; Cattaneo, C.; Fanci, R.; Nosari, A.; Caira, M.; Spadea, A.; Busca, A.; et al. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: An Italian multicentre prospective survey. Clin. Microbiol. Infect. 2015, 21, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, M.; Larson, E.L. Risk of drug resistance in repeat gram-negative infections among patients with multiple hospitalizations. J. Crit. Care 2018, 43, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Girmenia, C.; Bertaina, A.; Piciocchi, A.; Perruccio, K.; Algarotti, A.; Busca, A.; Cattaneo, C.; Raiola, A.M.; Guidi, S.; Iori, A.P.; et al. Incidence, Risk Factors and Outcome of Pre-engraftment Gram-Negative Bacteremia After Allogeneic and Autologous Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey. Clin. Infect. Dis. 2017, 65, 1884–1896. [Google Scholar] [CrossRef]
- Cattaneo, C.; Di Blasi, R.; Skert, C.; Candoni, A.; Martino, B.; Di Renzo, N.; Delia, M.; Ballanti, S.; Marchesi, F.; Mancini, V.; et al. Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann. Hematol. 2018, 97, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Giannella, M.; Trecarichi, E.M.; De Rosa, F.G.; Del Bono, V.; Bassetti, M.; Lewis, R.E.; Losito, A.R.; Corcione, S.; Saffioti, C.; Bartoletti, M.; et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study. Clin. Microbiol. Infect. 2014, 20, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhai, W.; Lin, Q.; Zhu, X.; Xiao, Z.; Yang, R.; Zheng, Y.; Zhang, F.; Li, S.; Wang, C.; et al. Carbapenem-resistant Enterobacteriaceae in hematological patients: Outcome of patients with Carbapenem-resistant Enterobacteriaceae infection and risk factors for progression to infection after rectal colonization. Int. J. Antimicrob. Agents 2019, 54, 527–529. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Spanu, T.; Caira, M.; Trecarichi, E.M.; Laurenti, L.; Montuori, E.; Fianchi, L.; Leone, F.; Fadda, G.; Cauda, R.; et al. Factors associated with mortality in bacteremic patients with hematologic malignancies. Diagn. Microbiol. Infect. Dis. 2009, 64, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Giuliano, G.; Cattaneo, C.; Ballanti, S.; Criscuolo, M.; Candoni, A.; Marchesi, F.; Laurino, M.; Dargenio, M.; Fanci, R.; et al. Bloodstream infections caused by Escherichia coli in onco-haematological patients: Risk factors and mortality in an Italian prospective survey. PLoS ONE 2019, 14, e0224465. [Google Scholar] [CrossRef] [PubMed]
- Girmenia, C.; Rossolini, G.M.; Piciocchi, A.; Bertaina, A.; Pisapia, G.; Pastore, D.; Sica, S.; Severino, A.; Cudillo, L.; Ciceri, F.; et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: A nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015, 50, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, M.C.; Hsu, D.I.; Bounthavong, M. Ceftolozane/tazobactam: A novel antipseudomonal cephalosporin and β-lactamase-inhibitor combination. Infect. Drug Resist. 2013, 29, 215–223. [Google Scholar]
- Giacobbe, D.R.; Mikulska, M.; Viscoli, C. Recent advances in the pharmacological management of infections due to multidrug-resistant Gram-negative bacteria. Expert Rev. Clin. Pharmacol. 2018, 11, 1219–1236. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; et al. Ceftolozane/tazobactam: Place in therapy. Expert Rev. Anti. Infect. Ther. 2018, 16, 307–320. [Google Scholar] [CrossRef]
- Koulenti, D.; Song, A.; Ellingboe, A.; Abdul-Aziz, M.H.; Harris, P.; Gavey, E.; Lipman, J. Infections by multidrug-resistant Gram-negative Bacteria: What’s new in our arsenal and what’s in the pipeline? Int. J. Antimicrob. Agents 2019, 53, 211–224. [Google Scholar] [CrossRef]
- Ho, S.; Nguyen, L.; Trinh, T.; MacDougall, C. Recognizing and Overcoming Resistance to New Beta-Lactam/Beta-Lactamase Inhibitor Combinations. Curr. Infect. Dis. Rep. 2019, 9, 39. [Google Scholar]
- Lagacé-Wiens, P.; Walkty, A.; Karlowsky, J.A. Ceftazidime-avibactam: An evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid. 2014, 9, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Macalintal, C.; Rasmussen, B.A.; Lee, V.J.; Yang, Y. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob. Agents Chemother. 1993, 37, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Moya, B.; Zamorano, L.; Juan, C.; Ge, Y.; Oliver, A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2010, 54, 3933–3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagace-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/beta-lactamase inhibitor combination. Drugs 2013, 3, 159–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, C.; Antoniazzi, F.; Casari, S.; Ravizzola, G.; Gelmi, M.; Pagani, C.; D’Adda, M.; Morello, E.; Re, A.; Borlenghi, E.; et al. P. aeruginosa bloodstream infections among hematological patients: An old or new question? Ann. Hematol. 2012, 91, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Tumbarello, M.; Caira, M.; Candoni, A.; Cattaneo, C.; Pastore, D.; Fanci, R.; Nosari, A.; Vianelli, N.; Busca, A.; et al. Multidrug resistant Pseudomonas aeruginosa bloodstream infection in adult patients with hematologic malignancies. Haematologica 2011, 96, e1–e3. [Google Scholar] [CrossRef] [Green Version]
- Tatarelli, P.; Mikulska, M. Multidrug-resistant bacteria in hematology patients: Emerging threats. Future Microbiol. 2016, 11, 767–780. [Google Scholar] [CrossRef]
- Averbuch, D.; Avaky, C.; Harit, M.; Stepensky, P.; Fried, I.; Ben-Ami, T.; Temper, V.; Peled, Y.; Troen, H.; Masarwa, R.; et al. Non-fermentative Gram-negative rods bacteremia in children with cancer: A 14-year single-center experience. Infection 2017, 45, 327–334. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, B.K.; Kim, S.K.; Han, S.B.; Lee, J.W.; Lee, D.G.; Chung, N.G.; Cho, B.; Jeong, D.C.; Kang, J.H. Clinical characteristics and outcomes of Pseudomonas aeruginosa bacteremia in febrile neutropenic children and adolescents with the impact of antibiotic resistance: A retrospective study. BMC Infect. Dis. 2017, 17, 500. [Google Scholar] [CrossRef] [Green Version]
- Viasus, D.; Puerta-Alcalde, P.; Cardozo, C.; Suárez-Lledó, M.; Rodríguez-Núñez, O.; Morata, L.; Feher, C.; Marco, F.; Chumbita, M.; Moreno-Garcia, E.; et al. Predictors of multidrug-resistant Pseudomonas aeruginosa in neutropenic patients with bloodstream infection. Clin. Microbiol. Infect. 2019. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. (Lausanne) 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Hachem, R.Y.; Chemaly, R.F.; Ahmar, C.A.; Jiang, Y.; Boktour, M.R.; Rjaili, G.A.; Bodey, G.P.; Raas, I.I. Colistin is effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in cancer patients. Antimicrob. Agents Chemother. 2007, 51, 1905–1911. [Google Scholar] [CrossRef] [Green Version]
- Durakovic, N.; Radojcic, V.; Boban, A.; Mrsic, M.; Sertic, D.; Serventi-Seiwerth, R.; Nemet, D.; Labar, B. Efficacy and safety of colistin in the treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in patients with hematologic malignancy: A matched pair analysis. Intern. Med. 2011, 50, 1009–1013. [Google Scholar] [CrossRef] [Green Version]
- Shortridge, D.; Pfaller, M.A.; Streit, J.M.; Flamm, R.K. Antimicrobial Activity of Ceftolozane-Tazobactam Tested against Contemporary (2015–2017) P. aeruginosa Isolates from a Global Surveillance Program. J. Glob. Antimicrob. Resist. 2019. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Satlin, M.J.; Elabor, A.; Saraiya, N.; McCreary, E.K.; Molnar, E.; EI-Beyrouty, C.; Jones, B.M.; Dixit, D.; Heil, E.L.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: A Multicenter Study. Open Forum Infect. Dis. 2018, 5, ofy280. [Google Scholar] [CrossRef]
- Bassetti, M.; Castaldo, N.; Cattelan, A.; Mussini, C.; Righi, E.; Tascini, C.; Menichetti, F.; Mastroianni, C.M.; Tumbarrello, M.; Grossi, P.; et al. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: A multicentre nationwide clinical experience. Int. J. Antimicrob. Agents 2019, 53, 408–415. [Google Scholar] [CrossRef]
- Maraolo, A.E.; Mazzitelli, M.; Trecarichi, E.M.; Buonomo, A.R.; Torti, C.; Gentile, I. Ceftolozane/tazobactam for difficult-to-treat Pseudomonas aeruginosa infections: A systematic review about its efficacy and safety for off-label indications. Int. J. Antimicrob. Agents 2020, 105891. [Google Scholar] [CrossRef]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Bonomo, R.A.; et al. Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas Aeruginosa. Clin. Infect. Dis. 2019, ciz816. [Google Scholar] [CrossRef]
- Saran, O.; Sulik-Tyszka, B.; Basak, G.W.; Wróblewska, M.M. Activity of Ceftolozane/Tazobactam Against Gram-Negative Rods of the Family Enterobacteriaceae and Pseudomonas Spp. Isolated from Onco-Hematological Patients Hospitalized in a Clinical Hospital in Poland. Med. Sci. Monit. 2019, 25, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Hakki, M.; Lewis, J.S., II. Ceftolozane-tazobactam therapy for multidrug-resistant Pseudomonas aeruginosa infections in patients with hematologic malignancies and hematopoietic-cell transplant recipients. Infection 2018, 46, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, A.; Alba, N.; Semiglia-Chong, M.A.; Padilla, B.; Rodríguez-Macías, G.; Kwon, M.; Cerenado, E.; Chamorro-de-Vega, E.; Machado, M.; perez-Lago, L.; et al. A Case-Control Study of Real-Life Experience with Ceftolozane-Tazobactam in Patients with Hematologic Malignancy and Pseudomonas aeruginosa Infection. Antimicrob. Agents Chemother. 2019, 63, e02340-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, S.L.; Kontoyiannis, D.P.; DePombo, A.M.; Bhatti, M.M.; Tverdek, F.P.; Gettys, S.C.; Nicolau, D.P.; Numez, C.A. Use of Ceftolozane/Tazobactam in the Treatment of Multidrug-resistant Pseudomonas aeruginosa Bloodstream Infection in a Pediatric Leukemia Patient. Pediatr. Infect. Dis. J. 2016, 35, 1040–1042. [Google Scholar] [CrossRef]
- So, W.; Shurko, J.; Galega, R.; Quilitz, R.; Greene, J.N.; Lee, G.C. Mechanisms of high-level ceftolozane/tazobactam resistance in Pseudomonas aeruginosa from a severely neutropenic patient and treatment success from synergy with tobramycin. J. Antimicrob. Chemother. 2019, 74, 269–271. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Potoski, B.A.; Marini, R.V.; Doi, Y.; Kreiswirth, B.N.; Clancy, C.J. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob. Agents Chemother. 2017, 61, e00883-17. [Google Scholar] [CrossRef] [Green Version]
- Van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watikins, R.R.; Dou, Y.; et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis. 2018, 66, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase-producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Castón, J.J.; Lacort-Peralta, I.; Martín-Dávila, P.; Loeches, B.; Tabares, S.; Temkin, L.; Torre-Cisneros, J.; Pano-Pardo, J.R. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int. J. Infect. Dis. 2017, 59, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Metafuni, E.; Criscuolo, M.; Spanu, T.; Sica, S. Ceftazidime-avibactam for gram-negative multidrug-resistant bacteria in hematological patients: A single-center experience. Ann. Hematol. 2019, 98, 1495–1497. [Google Scholar] [CrossRef]
- Benchetrit, L.; Mathy, V.; Armand-Lefevre, L.; Bouadma, L.; Timsit, J.F. Successful treatment of septic shock due to NDM-1-producing Klebsiella pneumoniae using ceftazidime/avibactam combined with aztreonam in solid organ transplant recipients: Report of two cases. Int. J. Antimicrob. Agents 2019, 105842. [Google Scholar] [CrossRef] [PubMed]
- Emeraud, C.; Escaut, L.; Boucly, A.; Fortineau, N.; Bonnin, R.A.; Naas, T. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, C.A.; Bonacorsi, S.; Fahd, M.; Baruchel, A.; Cointe, A.; Poey, N. Successful Treatment of Bacteremia Due to NDM-1-Producing Morganella morganii with Aztreonam and Ceftazidime-Avibactam Combination in a Pediatric Patient with Hematologic Malignancy. Antimicrob. Agents Chemother. 2019, 63, e02463-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, K.; Hemarajata, P.; Sun, D.; Rubio-Aparicio, D.; Tsivkovski, R.; Yang, S. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Papp-Wallace, K.M. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert. Opin. Pharmacother. 2019, 20, 2169–2184. [Google Scholar] [CrossRef]
- Patel, G.; Huprikar, S.; Factor, S.H.; Jenkins, S.G.; Calfee, D.P. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect. Control. Hosp. Epidemiol. 2008, 29, 1099–1106. [Google Scholar] [CrossRef]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 51, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Petrosillo, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J. Clin. Med. 2019, 8, 934. [Google Scholar] [CrossRef] [Green Version]
Antibiotic Combination | Mechanism of Action | Main Targets | Drug Resistance | Dosage (CrCL >50 mL/min) | Approved Clinical Indications | References |
---|---|---|---|---|---|---|
Ceftolozane/Tazobactm | Ceftolozane: inhibition of cell-wall synthesis via binding of PBPs with greater affinity for PBPs 1b, 1c, 2 and 3. Tazobactam: inhibition of most Ambler class A and some class C β-lactamases. | ESBL producing Enterobacteriaceae; MDR Pseudomonas aeruginosa | Carbepenem-resistant Enterobacteriaceae; Carbapenem-resistant Acinetobacter baumannii | 1.5 g (1 g ceftolozane and 500 mg tazobactam) IV q8h for cIAI I and cUTI 3 g (ceftolozane 2 g and tazobactam 1 g) IV every 8 hours for pneumonia | cIAIs (in combination with metronidazole), cUTIs, Hospital-acquired/ventilator-associated pneumonia | Hong 2013 [15] Giacobbe 2018 [16] Giacobbe 2018 [17] Koulenti 2018 [18] Ho 2019 [19] |
Ceftazidime/Avibactam | Ceftazidime: inhibition of cell-wall synthesis via binding of PBPs with greater affinity for PBP 3. Avibactam: inhibition of Ambler class A (e.g., ESBL and KPC), class C (e.g., AmpC), and some class D (e.g., OXA-48) enzymes | Carbapenem-resistant (KPC- or OXA-48 producing) Enterobacteriaceae | Ambler class B β-lactamases (i.e metallo β-lactamases) producing Gram-negative bacteria; Carbepenem-resistant Acinetobacter baumannii | 2.5 g (2 g ceftazidime and 500 mg avibactam) IV q8h | Complicated intra-abdominal infections (in combination with metronidazole), Complicated urinary tract infections, Hospital-acquired/ventilator-associated pneumonia Aerobic Gram-negative infections in patients with limited treatment options (only EMA) | Hong [15] Lagacé-Wiens 2014 [20] Sheu C-C 2019 [21] |
Antibiotic Combination | Type of Study | N of Patients Treated with C/T or C/A | Year of Interest | Isolated Species | Clinical Sample Sites | Combination Therapy | Mortality | Recurrence | Resistance |
---|---|---|---|---|---|---|---|---|---|
Ceftolozane/Tazobactam | |||||||||
Hakki 2018 [42] | Retrospective case series | 6 | NA | MDR P. aeruginosa | Blood, BAL, soft tissue | None | 30-day 0% | 1 case | 1 case |
Fernández-Cruz 2019 [43] | Retrospective case-control | 19 | 2016–2018 | P. aeruginosa (MDR 51.2%) | Blood, BAL, soft tissue, urine | 42.1% (amikacin, levofloxacin, colistin, fosfomycin) | 30-day 5.3% | 3 cases | None |
Aitken 2016 [44] | Case report | 1 | NA | MDR P. aeruginosa | Blood | Tobramycin and ciprofloxacin | 0 | No | None |
So 2019 [45] | Case report | 1 | NA | Ceftolozane/tazobactam P. aeruginosa | Blood | Tobramycin | 0 | No | Yes |
Ceftazidime/Avibactam | |||||||||
Caston 2017 [49] | Retrospective | 8 | 2012–2016 | Carbapenemase-producing Enterobacteriaceae | Blood | 100% (aminoglycoside, carbapenems, fosfomycin, tigecycline and/or colistin) | 30-day 25% | None | None |
Metafuni 2019 [50] | Case series | 3 | 2017–2018 | Carbapenemase-producing K. Pneumoniae (2) MDR P. aeruginosa (1) | Blood | 100% (carbapenems, tigecycline, colistin) | 30-day 33.3% | None | None |
Hobson 2019 [53] | Case report | 1 | NA | NDM-1-Producing Morganella morganii | Blood | Aztreonam | 0 | None | None |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criscuolo, M.; Trecarichi, E.M. Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences. Antibiotics 2020, 9, 58. https://doi.org/10.3390/antibiotics9020058
Criscuolo M, Trecarichi EM. Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences. Antibiotics. 2020; 9(2):58. https://doi.org/10.3390/antibiotics9020058
Chicago/Turabian StyleCriscuolo, Marianna, and Enrico Maria Trecarichi. 2020. "Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences" Antibiotics 9, no. 2: 58. https://doi.org/10.3390/antibiotics9020058
APA StyleCriscuolo, M., & Trecarichi, E. M. (2020). Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences. Antibiotics, 9(2), 58. https://doi.org/10.3390/antibiotics9020058