Gram-Negative Bloodstream Infection: Implications of Antimicrobial Resistance on Clinical Outcomes and Therapy
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Hasan, M.N.; Eckel-Passow, J.E.; Baddour, L.M. Recurrent Gram-negative bloodstream infection: A 10-year population-based cohort study. J. Infect. 2010, 61, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH–ARORI). Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, S.S.; Lai, Y.L.E.; Ricotta, E.E.; Strich, J.R.; Babiker, A.; Rhee, C.; Klompas, M.; Dekker, J.P.; Powers, J.H., III; Danner, R.L.; et al. External validation of difficult-to-treat resistance prevalence and mortality risk in Gram-negative bloodstream infection using electronic health record data from 140 US hospitals. Open Forum Infect. Dis. 2019, 6, ofz110. [Google Scholar] [CrossRef]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Forming the National Insititutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH-ARORI). Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: A retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Cain, S.E.; Kohn, J.; Bookstaver, P.B.; Albrecht, H.; Al-Hasan, M.N. Stratification of the impact of inappropriate empirical antimicrobial therapy for Gram-negative bloodstream infections by predicted prognosis. Antimicrob. Agents Chemother. 2015, 59, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battle, S.E.; Kohn, J.; Bookstaver, B.; Albrecht, H.; Al-Hasan, M.N. Association between inappropriate empirical antimicrobial therapy and hospital length of stay in Gram-negative bloodstream infections: Stratification by prognosis. J. Antimicrob. Chemother. 2017, 72, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasan, M.N. Gram-negative bacteria with difficult-to-treat resistance: A moving target. Clin. Infect. Dis. 2020, ciaa384. [Google Scholar] [CrossRef]
- Punjabi, C.; Tien, V.; Meng, L.; Deresinski, S.; Holubar, M. Oral fluoroquinolone or trimethoprim-sulfamethoxazole vs. ß-lactams as step-down therapy for Enterobacteriaceae bacteremia: Systematic review and meta-analysis. Open Forum Infect. Dis. 2019, 6, ofz364, Epub ahead of print. [Google Scholar] [CrossRef]
- Al-Hasan, M.N.; Rac, H. Transition from intravenous to oral antimicrobial therapy in patients with uncomplicated and complicated bloodstream infections. Clin. Microbiol. Infect. 2020, 26, 299–306. [Google Scholar] [CrossRef]
- Lautenbach, E.; Metlay, J.P.; Bilker, W.B.; Edelstein, P.H.; Fishman, N.O. Association between fluoroquinolone resistance and mortality in Escherichia coli and Klebsiella pneumoniae infections: The role of inadequate empirical antimicrobial therapy. Clin. Infect. Dis. 2005, 41, 923–929. [Google Scholar]
- Brigmon, M.M.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Impact of fluoroquinolone resistance in Gram-negative bloodstream infections on healthcare utilization. Clin. Microbiol. Infect. 2015, 21, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Porter, S.; Thuras, P.; Castanheira, M. Epidemic emergence in the United States of Escherichia coli sequence type 131-H30 (ST131-H30), 2000 to 2009. Antimicrob. Agents Chemother. 2017, 61, e00732-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Perencevich, E.N.; Livorsi, D.J.; Alexander, B.; Beck, B.F.; Richardson, K.K.; Goto, M. Attributable mortality due to fluoroquinolone and extended-spectrum cephalosporin resistance in hospital-onset Escherichia coli and Klebsiella spp bacteremia: A matched cohort study in 129 Veterans Health Administration medical centers. Infect. Control Hosp. Epidemiol. 2019, 40, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Perencevich, E.N.; Nair, R.; Livorsi, D.J.; Goto, M. Excess length of acute inpatient stay attributable to acquisition of hospital-onset Gram-negative bloodstream infection with and without antibiotic resistance: A multistate model analysis. Antibiotics 2020, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- USCAST. The National Antimicrobial Susceptibility Testing Committee for the United States. Quinolone In Vitro Susceptibility Test Interpretive Criteria Evaluations. Version 1.3. 2018. Available online: http://www.uscast.org (accessed on 1 December 2020).
- Shealy, S.C.; Brigmon, M.M.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Al-Hasan, M.N. Impact of reappraisal of fluoroquinolone minimum inhibitory concentration susceptibility breakpoints in Gram-negative bloodstream isolates. Antibiotics 2020, 9, 189. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A randomized clinical trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, A.; Delerue, T.; Morel, H.; Le Monnier, A.; Carbonnelle, E.; Pilmis, B.; Zahar, J.R.; On Behalf the Saint-Joseph/Avicenna Study Group. Infections caused by naturally AmpC-producing Enterobacteriaceae: Can we use third-generation cephalosporins? A narrative review. Int. J. Antimicrob. Agents 2020, 55, 105834. [Google Scholar] [CrossRef]
- Hilty, M.; Sendi, P.; Seiffert, S.N.; Droz, S.; Perreten, V.; Hujer, A.M.; Bonomo, R.A.; Mühlemann, K.; Endimiani, A. Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: Is cefepime adequate therapy? Int. J. Antimicrob. Agents 2013, 41, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Derrick, C.; Bookstaver, P.B.; Lu, Z.K.; Bland, C.M.; King, S.T.; Stover, K.R.; Rumley, K.; MacVane, S.H.; Swindler, J.; Kincaid, S.; et al. Multicenter, observational cohort study evaluating third-generation cephalosporin therapy for bloodstream infections secondary to Enterobacter, Serratia, and Citrobacter species. Antibiotics 2020, 9, 254. [Google Scholar] [CrossRef]
- Al-Hasan, M.N.; Lahr, B.D.; Eckel-Passow, J.E.; Baddour, L.M. Predictive scoring model of mortality in Gram-negative bloodstream infection. Clin. Microbiol. Infect. 2013, 19, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Al-Hasan, M.N.; Juhn, Y.J.; Bang, D.W.; Yang, H.J.; Baddour, L.M. External validation of bloodstream infection mortality risk score in a population-based cohort. Clin. Microbiol. Infect. 2014, 20, 886–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, K.S.; Cosgrove, S.; Harris, A.; Eliopoulos, G.M.; Carmeli, Y. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob. Agents Chemother. 2001, 45, 2628–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Oh, M.D.; Kim, E.C.; Choe, K.W. Bloodstream infections caused by Enterobacter species: Predictors of 30-day mortality rate and impact of broad-spectrum cephalosporin resistance on outcome. Clin. Infect. Dis. 2004, 39, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Lee, C.-H.; Chen, P.-L.; Hsieh, C.-C.; Tang, H.-J.; Ko, W.-C. Definitive cefazolin treatment for community-onset Enterobacteriaceae bacteremia based on the contemporary CLSI breakpoint: Clinical experience of a medical center in Southern Taiwan. Antibiotics 2019, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Seddon, M.M.; Bookstaver, P.B.; Justo, J.A.; Kohn, J.; Rac, H.; Haggard, E.; Mediwala, K.N.; Dash, S.; Al-Hasan, M.N. Role of early de-escalation of antimicrobial therapy on risk of Clostridioides difficile infection following Enterobacteriaceae bloodstream infections. Clin. Infect. Dis. 2019, 69, 414–420. [Google Scholar] [CrossRef]
- Shelenkov, A.; Mikhaylova, Y.; Yanushevich, Y.; Samoilov, A.; Petrova, L.; Fomina, V.; Gusarov, V.; Zamyatin, M.; Shagin, D.; Akimkin, V. Molecular typing, characterization of antimicrobial resistance, virulence profiling and analysis of whole-genome sequence of clinical Klebsiella pneumoniae isolates. Antibiotics 2020, 9, 261. [Google Scholar] [CrossRef]
- Fokam, D.; Dickson, K.; Kamali, K.; Holbein, B.; Colp, P.; Stueck, A.; Zhou, J.; Lehmann, C. Iron chelation in murine models of systemic inflammation induced by Gram-positive and Gram-negative toxins. Antibiotics 2020, 9, 283. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of bloodstream infections due to Gram-negative bacteria with difficult-to-treat resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef]
- Martin-Loeches, I. Current concepts in community and ventilator associated lower respiratory tract infections in ICU patients. Antibiotics 2020, 9, 380. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hasan, M.N. Gram-Negative Bloodstream Infection: Implications of Antimicrobial Resistance on Clinical Outcomes and Therapy. Antibiotics 2020, 9, 922. https://doi.org/10.3390/antibiotics9120922
Al-Hasan MN. Gram-Negative Bloodstream Infection: Implications of Antimicrobial Resistance on Clinical Outcomes and Therapy. Antibiotics. 2020; 9(12):922. https://doi.org/10.3390/antibiotics9120922
Chicago/Turabian StyleAl-Hasan, Majdi N. 2020. "Gram-Negative Bloodstream Infection: Implications of Antimicrobial Resistance on Clinical Outcomes and Therapy" Antibiotics 9, no. 12: 922. https://doi.org/10.3390/antibiotics9120922
APA StyleAl-Hasan, M. N. (2020). Gram-Negative Bloodstream Infection: Implications of Antimicrobial Resistance on Clinical Outcomes and Therapy. Antibiotics, 9(12), 922. https://doi.org/10.3390/antibiotics9120922